Skip to main content
Log in

Half-Metallic Properties of the Ru2ZrSb Full-Heusler Compound: a First-Principles Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A first-principles study on the electronic structure and magnetic properties of the Ru2ZrSb Heusler compound has been performed by using the self-consistent full-potential linearized augmented plane wave (FPLAPW) method. It is found that the AlCu2Mn-type structure exhibits half-metallic ferrimagnetism and is preferable energywise than the CuHg2Ti-type structure. The total spin magnetic moment is based on mainly the Ru atoms and obeys the Slater-Pauling rule. The calculated total magnetic moment of Ru2ZrSb is −1.0 μ B at the equilibrium lattice constant 6.497 Å for the AlCu2Mn-type structure. The spin-down electrons are metallic, but the spin-up bands are semiconductor with a gap of 0.388 eV, and the spin-flip gap is 0.313 eV. The AlCu2Mn-type Ru2ZrSb Heusler compound keeps a 100 % of spin polarization for lattice constants ranging between 6.40 and 6.53 Å. The Curie temperature is estimated to be 322.7 K in the mean field approximation (MFA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., Van Wees, B.J.: Phys. Rev. B 62, R4790 (2000)

    Article  ADS  Google Scholar 

  2. Zutic, I., Fabian, J., Das Sarma, S.: Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  3. Galanakis, I., Mavropoulos, Ph., Dederichs, P.H.: J. Phys. D 39, 765 (2006)

    Article  ADS  Google Scholar 

  4. de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  5. Felser, C., Fecher, G.H., Balke, B.: Angew. Chem. Int. Ed. 46, 668 (2007)

    Article  Google Scholar 

  6. Kervan, N., Kervan, S.: Intermetallics 24, 56 (2012)

    Article  Google Scholar 

  7. Kervan, N., Kervan, S.: J. Magn. Magn. Mater. 324, 645 (2012)

    Article  ADS  Google Scholar 

  8. Lewis, S.P., Allen, P.B., Sasaki, T.: Phys. Rev. B 55, 10253 (1997)

    Article  ADS  Google Scholar 

  9. Jedema, F.J., et al.: Nature (London) 410, 345 (2001)

    Article  ADS  Google Scholar 

  10. Kronik, L., Jain, M., Chelikowsky, J.R.: Phys. Rev. B 66, 041203 (2002)

    Article  ADS  Google Scholar 

  11. Ye, L.-H., Freeman, A.J., Delley, B.: Phys. Rev. B 73, 033203 (2006)

    Article  ADS  Google Scholar 

  12. Wan, X., Kohno, M., Hu, X.: Phys. Rev. Lett. 95, 146602 (2005)

    Article  ADS  Google Scholar 

  13. Xu, Y.-Q., Liu, B.-G., Pettifor, D.G.: Physica B 329–333, 1117 (2003)

    Article  Google Scholar 

  14. Yao, K.L., Gao, G.Y., Liu, Z.L., Zhu, L.: Solid State Commun 133, 301 (2005)

    Article  ADS  Google Scholar 

  15. Yao, K.L., Gao, G.Y., Liu, Z.L., Zhu, L., Li, Y.L.: Physica B 366, 62 (2005)

    Article  ADS  Google Scholar 

  16. Ge, X.-F., Zhang, Y.-M., Mag, J.: Mag. Mater 321, 198 (2009)

    Article  ADS  Google Scholar 

  17. Wang, Y.-H. A., Gupta, A., Chshiev, M., Butler, W.H.: Appl. Phys. Let. 92, 062507 (2008)

    Article  ADS  Google Scholar 

  18. Heusler, Fr., Deutsch, Verh.: Phys. Ges 5, 219 (1903)

    Google Scholar 

  19. Kandpal, H.C., Fecher, G.H., Felser, C., Phys, J.: D: Appl. Phys 40, 1507 (2007)

    ADS  Google Scholar 

  20. Li, S., Liu, Y., Ren, Z., Zhang, X., Liu, G.: Int. J. Mod. Phys. 27, 1350161 (2013)

    Article  ADS  Google Scholar 

  21. Gupta, D.C., Bhat, I.H.: J. Alloys Compd 575, 292 (2013)

    Article  Google Scholar 

  22. Rauf, S., Arif, S., Haneef, M., Amin, B., Phys, J.: Chem. Solids 76, 153 (2015)

    Article  ADS  Google Scholar 

  23. Wollmann, L., Chadov, S., Kübler, J., Felser, C.: Phys. Rev. B 90, 214420 (2014)

    Article  ADS  Google Scholar 

  24. Blaha, P., Schwarz, K., Madsen, G.K.H., Hvasnicka, D., Luitz, J.: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz, Techn. Universit Wien, Austria. ISBN: 3-9501031-1-2 (2001)

  25. Singh, D.: Planes waves pseudo-potentials and the LAPW method. Kluwer Academic Publishers , Boston, Dortrecht, London (1994)

    Book  Google Scholar 

  26. Perdew, J.P., Burke, K., Wang, Y.: Phys. Rev. B 54, 16533 (1996)

    Article  ADS  Google Scholar 

  27. Perdew, J.P., Burke, S., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  28. Murnaghan, F.D.: Proc. Natl. Acad. Sci. USA 30, 244 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  29. Graf, T., Felser, C., Parkin, S.S.P.: Progress in solid state chemistry 39, 1 (2011)

    Article  Google Scholar 

  30. Sato, K., Dederichs, P.H., Katayama-Yoshida, H., Kudrnovsky, J., Phys, J.: Condens. Matter 16, S5491 (2004)

    Article  ADS  Google Scholar 

  31. Şaşıoğlu, E., Sandratskii, L.M., Bruno, P.: J. Phys.: Condens. Matter 17, 995 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selçuk Kervan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kervan, S., Kervan, N. Half-Metallic Properties of the Ru2ZrSb Full-Heusler Compound: a First-Principles Study. J Supercond Nov Magn 29, 747–751 (2016). https://doi.org/10.1007/s10948-015-3336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3336-7

Keywords

Navigation