Skip to main content
Log in

High-Temperature Superconductivity in a Hyperbolic Geometry of Complex Matter from Nanoscale to Mesoscopic Scale

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

While it was known that high-temperature superconductivity appears in cuprates showing complex multiscale phase separation due to inhomogeneous charge density wave (CDW) order, the spatial distribution of CDW domains remained an open question for a long time, because of the lack of experimental probes able to visualize their spatial distribution between atomic and macroscopic scale. Recently scanning micro-X-ray diffraction (S μXRD) revealed CDW crystalline electronic puddles with a complex fat-tailed spatial distribution of their size. In this work, we have determined and mapped the anisotropy of the CDW puddles in HgBa2CuO4 + y (Hg1201) single crystal. We discuss the emergence of high-temperature superconductivity in the interstitial space with hyperbolic geometry that opens a new paradigm for quantum coherence at high temperature where negative dielectric function and interference between different pathways can help to raise the critical temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nader, E., Ziolkowski, R.W.: Metamaterials: physics and engineering explorations. Wiley (2006). http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471761028.html

  2. Cohen, A., Frydman, A.: Mesoscopic effects in macroscopic granular systems. J. Phys. Condens. Matter 20, 075234 (2008). doi:10.1088/0953-8984/20/7/075234

    Article  ADS  Google Scholar 

  3. Riekel, C., Burghammer, M., Davies, R., Gebhardt, R.: Fundamentals of non-crystalline diffraction with microfocus techniques. In: Ezquerra, T.A., Garcia-Gutierrez, M.C., Nogales, A., Gomez, M. (eds.) Applications of Synchrotron Light to Non-Crystalline Diffraction in Materials and Life Sciences, p. 91. Springer, Heidelberg (2008)

    Google Scholar 

  4. Campi, G., Ciasca, G., Poccia, N., Ricci, A., Fratini, M., Bianconi, A.: Controlling photoinduced electron transfer via defects self-organization for novel functional macromolecular systems. Curr. Protein Pept. Sci. 15(4), 394–399 (2014). http://www.eurekaselect.com/121160/article#

    Article  Google Scholar 

  5. Campi, G., Pezzotti, G., Fratini, M., Ricci, A., Burghammer, M., Cancedda, R., Mastrogiacomo, M., Bukreeva, I., Cedola, A.: Imaging regenerating bone tissue based on neural networks applied to micro-diffraction measurements. Appl. Phys. Lett. 103, 253703 (2013). doi:10.1063/1.4852056

    Article  ADS  Google Scholar 

  6. Poccia, N., Campi, G., Ricci, A., Caporale, A.S., Di Cola, E., Hawkins, T.A., Bianconi, A.: Changes of statistical structural fluctuations unveils an early compacted degraded stage of PNS myelin. Scientific Reports 4, 5430 (2014). http://www.nature.com/articles/srep05430?WT.ec_id=SREP-20140701

    Article  ADS  Google Scholar 

  7. Campi, G., Fratini, M., Bukreeva, I., Ciasca, G., Burghammer, M., Brun, F., Tromba, G., Mastrogiacomo, M., Cedola, A.: Imaging collagen packing dynamics during mineralization of engineered bone tissue. Acta Biomater. 23, 309–316 (2015). http://www.sciencedirect.com/science/article/pii/S1742706115002573

    Article  Google Scholar 

  8. Giraldo-Gallo, P., Zhang, Y., Parra, C., Manoharan, H.C., Beasley, M.R., Geballe, T.H., Kramer, M.J., Fisher, I.R.: Stripe-like nanoscale structural phase separation in superconducting BaPb1−xBixO3. Nat. Commun. 6, 8231 (2015). http://www.nature.com/ncomms/2015/150916/ncomms9231/full/ncomms9231.html

    Article  ADS  Google Scholar 

  9. Campi, G., Capelluti, E., Proffen, Th., Qiu, X., Bozin, E.S., Billinge, S.J.L., Agrestini, S., Saini, N.L., Bianconi, A.: Study of temperature dependent atomic correlations in MgB2. Eur. Phys. J. B 52, 15–21 (2006). http://link.springer.com/article/10.1140/epjb/e2006-00269-7

    Article  ADS  Google Scholar 

  10. Campi, G., Ricci, A., Bianconi, A.: Local structure in Mg1−xAlx B 2 system by high resolution neutron diffraction. J. Supercond. Nov. Magn. 25, 1319–1322 (2012). http://link.springer.com/article/10.1007/s10948-012-1602-5

    Article  Google Scholar 

  11. Poccia, N., Bianconi, A., Campi, G., Fratini, M., Ricci, A.: Size evolution of the oxygen interstitial nanowires in La2CuO4+y by thermal treatments and x-ray continuous illumination. Supercond. Sci. Technol. 25, 124004 (2012). http://link.springer.com/article/10.1007/s10948-012-1602-5

    Article  ADS  Google Scholar 

  12. Fratini, M., Poccia, N., Ricci, A., Campi, G., Burghammer, M., Aeppli, G.: & Bianconi A. Scale-free structural organization favoring high temperature superconductivity. Nature 466, 841–844 (2010). http://www.nature.com/nature/journal/v466/n7308/abs/nature09260.html

    Article  ADS  Google Scholar 

  13. Campi, A. Ricci, Poccia, N., Barba, L., Arrighetti, G., Burghammer, M., Caporale, A.S., Bianconi, A.: Scanning micro-x-ray diffraction unveils the distribution of oxygen chain nanoscale puddles in YBa2Cu3O6.33. Phys. Rev. B 87, 014517 (2013). doi:10.1103/PhysRevB.87.014517

    Article  ADS  Google Scholar 

  14. Ricci, A., Poccia, N., Campi, G., Coneri, F., Barba, L., Arrighetti, G., Polentarutti, M., Burghammer, M., Sprung, M., Zimmermann, M.v., Bianconi, A.: Networks of superconducting nano-puddles in 1/8 doped YBa2Cu3O6.5 controlled by thermal manipulation. New J. Phys. 16, 053030 (2014). http://iopscience.iop.org/article/10.1088/1367-2630/16/5/053030/meta

    Article  ADS  Google Scholar 

  15. Ricci, A., Poccia, N., Campi, G., Joseph, B., Arrighetti, G., Barba, L., Reynolds, M., Burghammer, M., Takeya, H., Mizuguchi, Y., Takano, Y., Colapietro, M., Saini, N.L., Bianconi, A.: Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused x-ray diffraction. Phys. Rev. B 84, 060511 (2011). doi:10.1103/PhysRevB.84.060511

    Article  ADS  Google Scholar 

  16. Ricci, A., Poccia, N., Joseph, B., Arrighetti, G., Barba, L., Plaisier, J., Campi, G., Mizuguchi, Y., Takeya, H., Takano, Y., Saini, N. L., Bianconi, A.: Intrinsic phase separation in superconducting K0.8Fe1.6Se2 (Tc = 31.8 K) single crystals. Supercond. Sci. Technol. 24, 082002 (2011). http://iopscience.iop.org/article/10.1088/ 0953-2048/24/8/082002/meta

    Article  ADS  Google Scholar 

  17. Ricci, A., Poccia, N., Joseph, B., Innocenti, D., Campi, G., Zozulya, A., Westermeier, F., Schavkan, A., Coneri, F., Bianconi, A., Takeya, H., Mizuguchi, Y., Takano, Y., Mizokawa, T., Sprung, M., Saini, N.L.: Direct observation of nanoscale interface phase in the superconducting chalcogenide KxFe2−ySe2 with intrinsic phase separation. Phys. Rev. B 91(R), 020503 (2015). doi:10.1103/PhysRevB.91.020503

    Article  ADS  Google Scholar 

  18. Croft, T.P., Lester, C., Senn, M. S., Bombardi, A., Hayden, S.M.: Charge density wave fluctuations in La2−xSrxCuO4and their competition with superconductivity. Phys. Rev. B 89 (2014). doi:10.1103/PhysRevB.89.224513

  19. Campi, G., Innocenti, D., Bianconi, A.: CDW and similarity of the Mott insulator-to-metal transition in cuprates with the gas-to-liquid-liquid transition in supercooled water. J. Supercond. Nov. Magn. 28, 1355–1363 (2015). http://link.springer.com/article/10.1007/s10948-015-2955-3

    Article  Google Scholar 

  20. Poccia, N., Ricci, A., Campi, G., Fratini, M., Puri, A., Di Gioacchino, D., Marcelli, A., Reynolds, M., Burghammer, M., Saini, N L, Aeppli, G., Bianconi, A.: Optimum inhomogeneity of local lattice distortions in La2CuO4+y. Proc. Natl. Acad. Sci. U. S. A. 109, 15685–15690 (2012). http://www.pnas.org/content/109/39/15685.short

    Article  ADS  Google Scholar 

  21. Campi, G., Bianconi, A., Poccia, N., Bianconi, G., Barba, L., Arrighetti, G., Innocenti, D., Karpinski, J., Zhigadlo, N. D., Kazakov, S. M., Burghammer, M., Zimmermann, M.v., Sprung, M., Ricci, A.: Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 525, 359–362 (2015). http://www.nature.com/nature/journal/v525/n7569/abs/nature14987.html

    Article  ADS  Google Scholar 

  22. Karpinski, J., et al.: Single crystals of HgBa2Can−1CunOx and chain compounds A1−x CuO2 (A = Sr, Ca, Ba), high pressure synthesis and properties 117, 735–739 (1999)

  23. Lausi, A., Polentarutti, M., Onesti, S., Plaisier, J.R., Busetto, E., Bais, G., Barba, L., Cassetta, A., Campi, G., Lamba, D., Pifferi, A., Mande, S.C., Sarma, D.D., Sharma, S. M., Paolucci, G.: Status of the crystallography beamlines at elettra. Eur. Phys. J. Plus 130, 1–8 (2015). http://link.springer.com/article/10.1140/epjp/i2015-15043-3

    Article  Google Scholar 

  24. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev 51, 661–703 (2009). http://epubs.siam.org/doi/abs/10.1137/070710111

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Zeng, W., Sarkar, R., Luo, F., Gu, X., Gao, J.: Resilient routing for sensor networks using hyperbolic embedding of universal covering space. In: INFOCOM, 2010 Proc. IEEE, pp 1–9. IEEE (2010). http://ieeexplore.ieee.org/xpl/login.jsp?tp=&;arnumber=5461988&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5461988

  26. Cannon, J.W., Floyd, W.J., Kenyon, R., Parry, W.R.: Hyperbolic geometry. Flavors of Geometry 31, 59–115 (1997)

    MathSciNet  Google Scholar 

  27. Bianconi, A., Doniach, S., Lublin, D.: X-ray Ca K edge of calcium adenosine triphosphate system and of simple Ca compounds. Chem. Phys. Lett. 59, 121–124 (1978). doi:10.1016/0009-2614(78)85629-2

    Article  ADS  Google Scholar 

  28. Garcia, J., Bianconi, A., Benfatto, M., Natoli, C.R.: Coordination geometry of transition metal ions in dilute solutions by XANES. Le Journal de Physique Colloques 47(C8), C8-49 (1986). doi:10.1051/jphyscol:1986807

    Article  Google Scholar 

  29. Bianconi, A., Della Longa, S., Li, C., Pompa, M., Congiu-Castellano, A., Udron, D., Flank, A., Lagarde, P.: Linearly polarized Cu L3-edge x-ray-absorption near-edge structure of Bi2CaSr2Cu2O8. Phys. Rev. B 44, 10126–10138 (1991). doi:10.1103/physrevb.44.10126

    Article  ADS  Google Scholar 

  30. Bianconi, A., Missori, M., Oyanagi, H., Yamaguchi, H., Nishiara, Y., Della Longa, S: The measurement of the polaron size in the metallic phase of cuprate superconductors. Europhys. Lett. (EPL) 31, 411–415 (1995). http://iopscience.iop.org/0295-5075/31/7/012

    Article  ADS  Google Scholar 

  31. Bianconi, A.: Superstripes. Int. J. Mod. Phys. B 14, 3289–3297 (2000). doi:10.1142/S0217979200003769

    Article  ADS  Google Scholar 

  32. Krioukov, D., Kitsak, M., Sinkovits, R.S., Rideout, D., Meyer, D., Boguñá, M.: Network cosmology. Scientific Reports 2, 793 (2012). doi:10.1038/srep00793

    Article  ADS  Google Scholar 

  33. Wu, Z., Menichetti, G., Rahmede, C., Bianconi, G.: Emergent complex network geometry. Sci. Rep. 5, 10073 (2015). http://www.nature.com/articles/srep10073

    Article  ADS  Google Scholar 

  34. Pendry, J.B.: Quasi-extended electron states in strongly disordered systems. J. Phys. C Solid State Phys. 20 (5), 733 (1987). doi:10.1088/0022-3719/20/5/009

    Article  ADS  Google Scholar 

  35. Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996). doi:10.1103/physrevlett.76.4773

    Article  ADS  Google Scholar 

  36. Gao, J., Sun, L., Deng, H., Mathai, C.J., Gangopadhyay, S., Yang, X.: Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers. Appl. Phys. Lett. 103, 051111 (2013). doi:10.1063/1.4817678

    Article  ADS  Google Scholar 

  37. Romanowsky, M.B., Capasso, F.: Orientation-dependent Casimir force arising from highly anisotropic crystals: application to Bi2Sr2CaCu2O8 + δ . Phys. Rev. A 78, 042110 (2008). doi:10.1103/physreva.78.042110

    Article  ADS  Google Scholar 

  38. Barthelemy, P., Bertolotti, J., Wiersma, D.S.: A Lévy flight for light. Nature 453, 495–498 (2008). doi:10.1038/nature06948

    Article  ADS  Google Scholar 

  39. Bertolotti, J., van Putten, E.G., Blum, C., Lagendijk, A., Vos, W.L., Mosk, A.P.: Non-invasive imaging through opaque scattering layers. Nature 491, 232 (2012). doi:10.1038/nature11578

    Article  ADS  Google Scholar 

  40. Zeng, J., Wang, X., Sun, J., Pandey, A., Cartwright, A.N., Litchinitser, N.M.: Manipulating complex light with metamaterials. Scientific Reports 3, 02826 (2013). doi:10.1038/srep02826

    ADS  Google Scholar 

  41. Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photon 1, 41–48 (2007). doi:10.1038/nphoton.2006.49

    Article  ADS  Google Scholar 

  42. Esslinger, M., Vogelgesang, R., Talebi, N., Khunsin, W., Gehring, P., de Zuani, S., Gompf, B., Kern, K.: Tetradymites as natural hyperbolic materials for the near-infrared to visible. ACS Photonics 1(12), 1285–1289 (2014). doi:10.1021/ph500296e

    Article  Google Scholar 

  43. Narimanov, E.E., Kildishev, A.V.: Metamaterials: naturally hyperbolic. Nat Photon 9, 214–216 (2015). doi:10.1038/nphoton.2015.56

    Article  ADS  Google Scholar 

  44. Sun, J., Zeng, J., Wang, X., Cartwright, A.N., Litchinitser, N.M.: Concealing with structured light. Scientific Reports 4, 04093 (2014). doi:10.1038/srep04093

    ADS  Google Scholar 

  45. Yang, X.-S., Deb, S.: Cuckoo search via Levy flights. In: Nature; biologically inspired computing, 2009. NaBIC 2009. World Congress on. IEEE, pp. 210–214 (2009). doi:10.1109/nabic.2009.5393690

  46. Mnasri, K., Jeevanesan, B., Schmalian, J.: Critical phenomena in hyperbolic space. Phys. Rev. B 92, 134423 (2015). 1507.02909v1.pdf

    Article  ADS  Google Scholar 

  47. Chu, C.W., Chen, F., Shulman, J., Tsui, S., Xue, Y.Y., Wen, W., Sheng, P.: A negative dielectric constant in nano-particle materials under an electric field at very low frequencies. In: Proceedings of SPIE 5932, Strongly Correlated Electron Materials: Physics and Nanoengineering, 59320X (2005). doi:10.1117/12.626267

  48. Smolyaninov, I.I.: Quantum topological transition in hyperbolic metamaterials based on high Tc superconductors. J. Phys. Condens. Matter 26, 305701 (2014). doi:10.1088/0953-8984/26/30/305701

  49. Smolyaninov, I.I., Smolyaninova, V.N.: Is there a metamaterial route to high temperature superconductivity? Adv. Condens. Matter Phys, 1–6 (2014). doi:10.1155/2014/479635

  50. Smolyaninova, V.N., Yost, B., Zander, K., Osofsky, M.S., Kim, H., Saha, S., Greene, R.L., Smolyaninov, I.I.: Experimental demonstration of superconducting critical temperature increase in electromagnetic metamaterials. Scientific Reports 4, 7321 (2014). doi:10.1038/srep07321

    Article  ADS  Google Scholar 

  51. Poddubny, A.N., Rybin, M.V., Limonov, M.F., Kivshar, Y.S.: Fano interference governs wave transport in disordered systems. Nat. Commun. 3, 914 (2012). doi:10.1038/ncomms1924

    Article  ADS  Google Scholar 

  52. Kim, M., Choi, Y., Yoon, C., Choi, W., Kim, J., Park, Q.-H., Choi, W.: Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nat. Photonics 6, 583–587 (2012). doi:10.1038/nphoton.2012.159

    Article  ADS  Google Scholar 

  53. Bliokh, K., Bliokh, Y., Freilikher, V., Savel’ev, S., Nori, F.: Colloquium: unusual resonators: plasmonics, metamaterials, and random media. Rev. Mod. Phys. 80, 1201–1213 (2008). doi:10.1103/revmodphys.80.1201

    Article  ADS  Google Scholar 

  54. Bianconi, A., Jarlborg, T.: Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity. Novel Superconducting Materials 1, 1 (2015). doi:10.1515/nsm-2015-0006. arXiv:1507.01093

  55. Bianconi, A., Jarlborg, T.: Superconductivity above the lowest Earth temperature in pressurized sulfur hydride EPL (Europhysics Letters) in press (2015). arXiv:1510.05264

  56. Caivano, R., Fratini, M., Poccia, N., Ricci, A., Puri, A., Ren, Z.-A., Dong, X.-L., Yang, J., Lu, W., Zhao, Z.-X., Barba, L., Bianconi, A.: Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors. Supercond. Sci. Technol. 22, 014004 (2009). doi:10.1088/0953-2048/22/1/014004

    Article  ADS  Google Scholar 

  57. Bianconi, A.: Feshbach shape resonance in multiband superconductivity in heterostructures. J. Supercond. 18, 625–636 (2005). doi:10.1007/s10948-005-0047-5

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Campi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campi, G., Bianconi, A. High-Temperature Superconductivity in a Hyperbolic Geometry of Complex Matter from Nanoscale to Mesoscopic Scale. J Supercond Nov Magn 29, 627–631 (2016). https://doi.org/10.1007/s10948-015-3326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3326-9

Keywords

Navigation