Skip to main content
Log in

The Impurity Effects on the Superconducting Gap in the High- T c Superconductor Bi2Sr2CaCu2−x Fe x O 8 + δ Investigated by STM/STS

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We performed scanning tunneling microscopy/ spectroscopy (STM/STS) experiments to investigate Fe substitution effects on the superconductivity (SC) of overdoped Bi2212. The gap-edge peaks in STS spectrum at TT c become inhomogeneous strongly in Fe-doped Bi2212. The spectral weight around zero bias, namely the density of states (DOS) at ∼E F is partly recovered by substitution of Fe in every position. The recovery of the DOS at ∼E F can be explained in terms of impurity effects on d-wave SC in the unitarity limit. However, the strong inhomogeneity of gap-edge peaks would be ascribed to different effects due to Fe-substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ishida, K., et al.: Gapless superconductivity in Zn-doped YBa2Cu3 O 7 studied by Cu NMR and NQR: Possibility of d-wave superconductivity in high- T c oxides. Phys. C 179, 29–38 (1991)

    Article  ADS  Google Scholar 

  2. Bonn, D.A., et al.: Comparison of the influence of Ni and Zn impurities on the electromagnetic properties of YBa2Cu3 O 6.95. Phys. Rev. B 50, 4051–4063 (1994)

    Article  ADS  Google Scholar 

  3. Momono, N., et al.: Low-temperature electronic specific heat of La2−xSrxCuO4 and La2−xSrxCu1-yZny O 4:Evidence for a d-wave superconductor. Phys. C 233, 395–401 (1994)

    Article  ADS  Google Scholar 

  4. Momono, M., Ido, M.: Evidence for nodes in the superconducting gap of La2−xSrxCuO4: T 2 dependence of electronic specific heat and impurity effects. Phys. C 264, 311–318 (1996)

    Article  ADS  Google Scholar 

  5. Sun. Y., Maki. K.: Impurity effects in d-wave superconductors. Phys. Rev. B. 51, 6059–6063 (1995)

    Article  ADS  Google Scholar 

  6. Pan, S. H., et al.: Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2 O 8 + δ . Nature 403, 746–750 (2000)

    Article  ADS  Google Scholar 

  7. Kurosawa, T., et al.: Ni-impurity effects on the superconducting gap of La2−xSrxCuO4: Measurements of the electronic specific heat under magnetic fields. Phys. C 470, S42–43 (2010)

    Article  ADS  Google Scholar 

  8. Poccia, N., et al.: Optimum inhomogeneity of local lattice distortions in La2CuO4+y. PNAS 109, 15685–15690 (2012)

    Article  ADS  Google Scholar 

  9. Tranquada, J.M., et al.: Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995)

    Article  ADS  Google Scholar 

  10. Thampy, V., et al.: Rotated stripe order and its competition with superconductivity in La1.88Sr0.12CuO4. Phys. Rev. B 90, 100510–1-5 (2014)

    Article  ADS  Google Scholar 

  11. Akoshima, M., et al.: Anomalous suppression of superconductivity in Zn-substituted Bi2Sr2Ca1−x Y x(Cu1−yZny)2 O 8 + δ . Phys. Rev. B 62, 7491–7494 (2000)

    Article  Google Scholar 

  12. Suzuki, K.M., et al.: Distinct Fe-induced magnetic states in the underdoped and overdoped regimes of La2−xSrxCu1−yFey O 4 revealed by muon spin relaxation. Phys. Rev. B 86, 014522–1-9 (2012)

    ADS  Google Scholar 

  13. Parham, S., et al.: Pair breaking caused by magnetic impurities in the high-temperature superconductor Bi2.1Sr1.9Ca(Cu1−xFex)2 O y. Phys. Rev. B 87, 104501–1-6 (2013)

    Article  ADS  Google Scholar 

  14. Naamneh, M., et al.: Anisotropic scattering rate in Fe-substituted Bi2Sr2Ca(Cu1−xFex)2 O 8 + δ . Phys. Rev. B 91, 205138–1-5 (2015)

    Article  ADS  Google Scholar 

  15. McElroy, K., et al.: Coincidence of Checkerboard Charge Order and Antinodal State Decoherence in Strongly Underdoped Superconducting Bi2Sr2CaCu2 O 8 + δ . Phys. Rev. Lett. 94, 197005–1-4 (2005)

    Article  ADS  Google Scholar 

  16. Momono, N., et al.: STM/STS Study on 4a×4a Electronic Charge Order of Superconducting Bi2Sr2CaCu2 O 8 + δ . J. Phys. Soc. Jpn. 74, 2400–2403 (2005)

    Article  ADS  Google Scholar 

  17. Hashimoto, A., et al.: Scanning tunneling microscopy and spectroscopy study of 4a×4a electronic charge order and the inhomogeneous pairing gap in superconducting Bi2Sr2CaCu2 O 8 + δ . Phys. Rev. B 74, 064508–1-11 (2006)

    Article  ADS  Google Scholar 

  18. Kohsaka, Y., et al.: An Intrinsic Bond-Centered Electronic Glass with Unidirectional Domains in Underdoped Cuprates. Science 315, 1380–1385 (2007)

    Article  ADS  Google Scholar 

  19. Parker, C.V., et al.: Fluctuating stripes at the onset of the pseudogap in the high- T c superconductor Bi2Sr2CaCu2 O 8+x. Nature 468, 677–680 (2010)

    Article  ADS  Google Scholar 

  20. Kurosawa, T., et al.: Large pseudogap and nodal superconducting gap in Bi2Sr2−xLaxCuO6 + δ and Bi2Sr2CaCu2 O 8 + δ : Scanning tunneling microscopy and spectroscopy. Phys. Rev. B 81, 094519–1-7 (2010)

    Article  ADS  Google Scholar 

  21. Comin, R., et al.: Charge order driven by Fermi-Arc Instability in Bi2Sr2−xLaxCuO6 + δ . Science 343, 390–392 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Rotary Yoneyama Memorial Foundation and the Muroran Rotary Club for the financial support. This work was also supported by JSPS KAKENHI Grant Number 26400343.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Momono.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baar, S., Momono, N., Kawamura, K. et al. The Impurity Effects on the Superconducting Gap in the High- T c Superconductor Bi2Sr2CaCu2−x Fe x O 8 + δ Investigated by STM/STS. J Supercond Nov Magn 29, 659–662 (2016). https://doi.org/10.1007/s10948-015-3320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3320-2

Keywords

Navigation