Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 2, pp 501–508 | Cite as

First-principles Investigation of Half-metallicity and Ferrimagnet Properties of Co2ScZ (Z = As, Sb, and Bi)

Original Paper

Abstract

Based on the first-principles methods, the half-metallic ferrimagnet properties of Co2ScZ (Z = As, Sb, and Bi) full-Heusler alloys have been predicted by employing the full-potential linearized plane wave plus local orbital method (FP-LAPW + lo) within the framework of density functional theory (DFT) and generalized gradient approximation plus Coulomb repulsion (GGA + U) parameterization. The GGA scheme is served in this work to obtain only the equilibrium structural parameters in both paramagnetic and ferromagnetic phases, whereas the GGA + U scheme is exploited to treat the “d” electrons through electronic and magnetic properties of these Heusler alloys. The electronic structure investigation shows that all Co2ScAs, Co2ScSb, and Co2ScBi Heusler alloys are stable half metals with half-metallic gap energies (EHM) of 0.351, 1.080, and 0.836 eV, respectively. The total magnetic moment follows the generalized Slater-Pauling rule, where its value is around 2 μB for all these compounds. We have also found opposite signs between atomic magnetic moments of Co and Sc transition elements, demonstrating the ferrimagnetic behavior.

Keywords

Half-metallic ferrimagnet Heusler alloys FP-LAPW + lo GGA + U 

References

  1. 1.
    Galanakis, P.H.: Dederichs. In: Lecture notes in physics, vol. 676. Springer, Berlin (2005)Google Scholar
  2. 2.
    Webster, P.J., Ziebeck, K.R.A., Wijn, H.R.J.. In: Heusler alloys and compounds of d- elements with main group elements (Landolt-Bornstein-Group III Condensed Matter, Part 2, vol. 19c), p 1988. Springer, BerlinGoogle Scholar
  3. 3.
    Fujita, A., Fukamachi, K., Genma, F., Kainuma, R., Ishida, K.: Appl. Phys. Lett. 77, 3054 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    de Groot, R.A, Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    Webster, P.J., Ziebeck, K.R.A., Town, S.L., Peak, M.S.: Philos. Mag. B 49, 295 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    Pecharsky, V.K., Gschneidner Jr., K.A.: Phys. Rev. Lett. 78, 4494 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Ohno, H.: Science 281, 951 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    Li, Q., Gong, X., Wang, C., Wang, J., Ip, K., Hark, S.: Adv. Mater. 16, 1436 (2004)CrossRefGoogle Scholar
  9. 9.
    Galanakis, I., Mavropoulos, Ph., Dederichs, P.H.: J. Phys. D.: Appl. Phys. 39, 765 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Galanakis, I.: J. Phys.: Condens. Matter. 16, 3089 (2004)ADSGoogle Scholar
  11. 11.
    de Groot, R.A: Physica B 172, 45 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    Weht, R., Pickett, W.E.: Phys. Rev. B 60, 13006 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Lee, S.C., Lee, T.D., Blaha, P., Schwarz, K.: J. Appl. Phys. 97, 10C307 (2005)Google Scholar
  14. 14.
    Hulsen, B., Scheffler, M., Kratzer, P.: Phys. Rev. B 79, 094407 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Balke, B., Wurmehl, S., Fecher, G.H., Felser, C., Kübler, J.: Sci. Technol. Adv. Mater. 9, 014102 (2008)CrossRefGoogle Scholar
  16. 16.
    Kim, M., Lim, H., Lee, J. I.: Thin Solid Films 519, 8419 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Miura, Y., Nagao K., Shirai, M.: Phys. Rev. B 69, 144413 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Buschow, K.H.J., van Engen, P.G.: J. Magn. Magn. Mater. 25, 90–96 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    Wong, K.M., Alay-e-Abbas, S.M., Shaukat, A., Fang, Y., Lei, Y.: J. Appl. Phys. 113, 014304 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Wong, K.M., Alay-e-Abbas, S.M., Fang, Y., Shaukat, A., Lei, Y.: J. Appl. Phys. 114, 034901 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.K.: Comput. Phys. Commun. 59, 339 (1990)CrossRefGoogle Scholar
  23. 23.
    Perdew, J.P., Burke, S., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A.: Phys. Rev. B 48, 16929 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    Rai, D.P., Thapa, R.K.: J. Korean Physical Society 62, 1652–1660 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Murnaghan, F.D.: Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Shang, S.L., Wang, Y., Kim, D., Liu, Z.-K.: Comput. Mater. Sci. 47, 1040 (2010)CrossRefGoogle Scholar
  28. 28.
    Gilleßen, M.: Von der Fakultaat fur Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Natur-wissenschaften genehmigte Dissertation (2009)Google Scholar
  29. 29.
    Rai, D.P., Thapa, R.K.: Chin. J. Phys. 51, 812–823 (2013)ADSGoogle Scholar
  30. 30.
    Kervan, S., Kervan, N.: Intermetallics 19, 1642–1645 (2011)CrossRefGoogle Scholar
  31. 31.
    Yao, K.L., Gao, G.Y., Liu, Z.L., Zhu, L. Solid State Commun. 133, 301 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Gao, G.Y., Yao, K.L., Sasioglu, E., Sandratskii, L.M., Liu, Z.L., Jiang, J.L.: Phys. Rev. B 75, 174442 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Soulen Jr., R.J., et al.: Science 282, 85 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Galanakis, I., Alouani, M., Dreysse, H.: Phys. Rev. B 62, 3923 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Phys. Rev. B 66, 174429 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratoire de Physique Quantique, de la Matière et de la Modélisation Mathématique (LPQ3M)Université de MascaraMascaraAlgeria
  2. 2.Department of PhysicsIslamia College PeshawarPeshawarPakistan
  3. 3.College of Engineering, Chemical Engineering DepartmentKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations