Avoiding Stripe Order: Emergence of the Supercooled Electron Liquid

  • Louk Rademaker
  • Arnaud Ralko
  • Simone Fratini
  • Vladimir Dobrosavljević
Original Paper

Abstract

In the absence of disorder, electrons can display glassy behavior through supercooling the liquid state, avoiding the solidification into a charge ordered state. Such supercooled electron liquids are experimentally found in organic 𝜃- M M compounds. We present theoretical results that qualitatively capture the experimental findings. At intermediate temperatures, the conducting state crosses over into a weakly insulating pseudogap phase. The stripe order phase transition is first order, so that the liquid phase is metastable below T s . In the supercooled liquid phase, the resistivity increases further and the density of states at the Fermi level is suppressed, indicating kinetic arrest and the formation of a glassy state. Our results are obtained using classical Extended Dynamical Mean Field Theory.

Keywords

Electron glass Supercooled electron liquid Stripes 

Notes

Acknowledgments

L.R. was supported by the Dutch Science Foundation (NWO) through a Rubicon grant. A.R. and S.F. were supported by the French National Research Agency through Grant No. ANR-12-JS04-0003-01 SUBRISSYME. V.D. was supported by the NSF grants DMR-1005751 and DMR-1410132. V. D. would like to thank CPTGA for financing a visit to Grenoble, and KITP at UCSB, where part of the work was performed.

References

  1. 1.
    Debenedetti, P.G., Stillinger, F.H.: Nature 410, 259 (2001)CrossRefADSGoogle Scholar
  2. 2.
    Schmalian, J., Wolynes, P.G.: Phys. Rev. Lett. 85, 836 (2000)CrossRefADSGoogle Scholar
  3. 3.
    Pollak, M., Ortuno, M., Frydman, A.: The electron glass. Cambridge University Press (2013)Google Scholar
  4. 4.
    Kagawa, F., Sato, T., Miyagawa, K., Kanoda, K., Tokura, Y., Kobayashi, K., Kumai, R., Murakami, Y.: Nat. Phys. 9, 422 (2013)CrossRefGoogle Scholar
  5. 5.
    Nad, F., Monceau, P., Yamamoto, H.: Phys. Rev. B 76, 205101 (2007)CrossRefGoogle Scholar
  6. 6.
    Sato, T., Kagawa, F., Kobayashi, K., Miyagawa, K., Kanoda, K., Kumai, R., Murakami, Y., Tokura, Y.: Phys. Rev. B 89, 121102 (2014)Google Scholar
  7. 7.
    Mahmoudian, S., Rademaker, L., Ralko, A., Fratini, S., Dobrosavljević, V.: Phys. Rev. Lett. 115, 025701 (2015)CrossRefGoogle Scholar
  8. 8.
    Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J.: Rev. Mod. Phys. 68, 13 (1996)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Pramudya, Y., Terletska, H., Pankov, S., Manousakis, E., Dobrosavljević, V.: vol. 84, 125120 (2011)Google Scholar
  10. 10.
    Pankov, S., Kotliar, G., Motome, Y.: Phys. Rev. B 66, 045117 (2002)CrossRefGoogle Scholar
  11. 11.
    Pankov, S., Dobrosavljević, V.: Phys. Rev. Lett. 94, 046402 (2005)CrossRefGoogle Scholar
  12. 12.
    Müller, M., Pankov, S.: Phys. Rev. B 75, 144–201 (2007)Google Scholar
  13. 13.
    Wannier, G.H.: Phys. Rev. 79, 357 (1950)CrossRefADSMathSciNetMATHGoogle Scholar
  14. 14.
    Dobrosavljević, V., Trivedi, N., Valles, J. M. Jr: Conductor insulator quantum phase transitions. Oxford University Press, UK (2012)CrossRefGoogle Scholar
  15. 15.
    Kassner, E.R., et al.: Proc. Natl. Acad. Sci. 112, 8549–8554 (2015)Google Scholar
  16. 16.
    Smerald, A., Mila, F.: Phys. Rev. Lett. 115, 147202 (2015)Google Scholar
  17. 17.
    Efros, A.L., Shklovskii, B.I.: J. Phys. C 8, L49 (1975)CrossRefADSGoogle Scholar
  18. 18.
    Efros, A.L.: J. Phys. C 9, 2021 (1976)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Louk Rademaker
    • 1
  • Arnaud Ralko
    • 2
  • Simone Fratini
    • 2
  • Vladimir Dobrosavljević
    • 3
  1. 1.Kavli Institute for Theoretical PhysicsUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.Institut Néel-CNRS and Université Grenoble AlpesGrenoble Cedex 9France
  3. 3.Department of Physics and National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA

Personalised recommendations