Avoiding Stripe Order: Emergence of the Supercooled Electron Liquid

  • Louk Rademaker
  • Arnaud Ralko
  • Simone Fratini
  • Vladimir Dobrosavljević
Original Paper


In the absence of disorder, electrons can display glassy behavior through supercooling the liquid state, avoiding the solidification into a charge ordered state. Such supercooled electron liquids are experimentally found in organic 𝜃- M M compounds. We present theoretical results that qualitatively capture the experimental findings. At intermediate temperatures, the conducting state crosses over into a weakly insulating pseudogap phase. The stripe order phase transition is first order, so that the liquid phase is metastable below T s . In the supercooled liquid phase, the resistivity increases further and the density of states at the Fermi level is suppressed, indicating kinetic arrest and the formation of a glassy state. Our results are obtained using classical Extended Dynamical Mean Field Theory.


Electron glass Supercooled electron liquid Stripes 



L.R. was supported by the Dutch Science Foundation (NWO) through a Rubicon grant. A.R. and S.F. were supported by the French National Research Agency through Grant No. ANR-12-JS04-0003-01 SUBRISSYME. V.D. was supported by the NSF grants DMR-1005751 and DMR-1410132. V. D. would like to thank CPTGA for financing a visit to Grenoble, and KITP at UCSB, where part of the work was performed.


  1. 1.
    Debenedetti, P.G., Stillinger, F.H.: Nature 410, 259 (2001)CrossRefADSGoogle Scholar
  2. 2.
    Schmalian, J., Wolynes, P.G.: Phys. Rev. Lett. 85, 836 (2000)CrossRefADSGoogle Scholar
  3. 3.
    Pollak, M., Ortuno, M., Frydman, A.: The electron glass. Cambridge University Press (2013)Google Scholar
  4. 4.
    Kagawa, F., Sato, T., Miyagawa, K., Kanoda, K., Tokura, Y., Kobayashi, K., Kumai, R., Murakami, Y.: Nat. Phys. 9, 422 (2013)CrossRefGoogle Scholar
  5. 5.
    Nad, F., Monceau, P., Yamamoto, H.: Phys. Rev. B 76, 205101 (2007)CrossRefGoogle Scholar
  6. 6.
    Sato, T., Kagawa, F., Kobayashi, K., Miyagawa, K., Kanoda, K., Kumai, R., Murakami, Y., Tokura, Y.: Phys. Rev. B 89, 121102 (2014)Google Scholar
  7. 7.
    Mahmoudian, S., Rademaker, L., Ralko, A., Fratini, S., Dobrosavljević, V.: Phys. Rev. Lett. 115, 025701 (2015)CrossRefGoogle Scholar
  8. 8.
    Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J.: Rev. Mod. Phys. 68, 13 (1996)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Pramudya, Y., Terletska, H., Pankov, S., Manousakis, E., Dobrosavljević, V.: vol. 84, 125120 (2011)Google Scholar
  10. 10.
    Pankov, S., Kotliar, G., Motome, Y.: Phys. Rev. B 66, 045117 (2002)CrossRefGoogle Scholar
  11. 11.
    Pankov, S., Dobrosavljević, V.: Phys. Rev. Lett. 94, 046402 (2005)CrossRefGoogle Scholar
  12. 12.
    Müller, M., Pankov, S.: Phys. Rev. B 75, 144–201 (2007)Google Scholar
  13. 13.
    Wannier, G.H.: Phys. Rev. 79, 357 (1950)CrossRefADSMathSciNetMATHGoogle Scholar
  14. 14.
    Dobrosavljević, V., Trivedi, N., Valles, J. M. Jr: Conductor insulator quantum phase transitions. Oxford University Press, UK (2012)CrossRefGoogle Scholar
  15. 15.
    Kassner, E.R., et al.: Proc. Natl. Acad. Sci. 112, 8549–8554 (2015)Google Scholar
  16. 16.
    Smerald, A., Mila, F.: Phys. Rev. Lett. 115, 147202 (2015)Google Scholar
  17. 17.
    Efros, A.L., Shklovskii, B.I.: J. Phys. C 8, L49 (1975)CrossRefADSGoogle Scholar
  18. 18.
    Efros, A.L.: J. Phys. C 9, 2021 (1976)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Louk Rademaker
    • 1
  • Arnaud Ralko
    • 2
  • Simone Fratini
    • 2
  • Vladimir Dobrosavljević
    • 3
  1. 1.Kavli Institute for Theoretical PhysicsUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.Institut Néel-CNRS and Université Grenoble AlpesGrenoble Cedex 9France
  3. 3.Department of Physics and National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA

Personalised recommendations