Skip to main content
Log in

Tunable Thermal Conductivity of Silicene by Germanium Doping

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Silicene possesses excellent electronic properties and low thermal conductivity and hence is a potential material for thermoelectric applications. The key to improve the thermoelectric efficiency of silicene relies on opening a bandgap to enhance the thermopower and suppressing the lattice thermal conductivity. Based on first-principle calculations, we propose germanium doping as an effective way to tailor the thermal conductivity of silicene. The electronic transport properties of silicene is not affected by Ge doping, while the room-temperature thermal conductivity is significantly reduced by 62 % for a doping concentration of 6 %. The depression of phonon transport is attributed to the low-frequency phonon softening and enhanced phonon scattering by Ge doping. Our theoretical results will be beneficial for experimental modulating the thermal and thermoelectric properties of silicene and many other two-dimensional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yan Voon, L.C.L., Guzmán-Verri, G.G.: Is silicene the next graphene? MRS Bulletin 39, 366–373 (2014)

    Article  Google Scholar 

  2. Dimoulas, A.: Silicene and germanene: silicon and germanium in the “flatland”. Microelectron. Eng. 131, 68–78 (2015)

    Article  Google Scholar 

  3. Houssa, M., Pourtois, G., Afanas’ev, V.V., Stesmans, A.: Can silicon behave like graphene? A first-principles study. Appl. Phys. Lett. 97, 112106 (2010)

    Article  ADS  Google Scholar 

  4. Kara, A., Enriquez, H., Seitsonen, A.P., Lew Yan Voon, L.C., Vizzini, S., Aufray, B., Oughaddou, H.: A review on silicene—new candidate for electronics. Surf. Sci. Rep. 67, 1–18 (2012)

    Article  ADS  Google Scholar 

  5. Liu, C. C., Feng, W., Yao, Y.: Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)

    Article  ADS  Google Scholar 

  6. Zhao, H.: Strain and chirality effects on the mechanical and electronic properties of silicene and silicane under uniaxial tension. Phys. Rev. A 376, 3546–3550 (2012)

    Google Scholar 

  7. Liu, H., Gao, J., Zhao, J.: Silicene on substrates: a way to preserve or tune its electronic properties. J. Phys. Chem. C 117, 10353–10359 (2013)

    Article  Google Scholar 

  8. Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., Akinwande, D.: Silicene field-effect transistors operating at room temperature. Nat. Nanotech. 10, 227–231 (2015)

    Article  ADS  Google Scholar 

  9. Xie, H., Hu, M., Bao, H.: Thermal conductivity of silicene from first-principles. Appl. Phys. Lett. 104, 131906 (2014)

    Article  ADS  Google Scholar 

  10. Wang, Z., Feng, T., Ruan, X.: Thermal conductivity and spectral phonon properties of freestanding and supported silicene. J. App. Phys. 117, 084317 (2015)

    Article  ADS  Google Scholar 

  11. Liu, B., Reddy, C., Jiang, J., Zhu, H., Baimova, J.A., Dmitriev, S.V., Zhou, K.: Thermal conductivity of silicene nanosheets and the effect of isotopic doping. J. Phys. D: Appl. Phys. 47, 165301 (2014)

    Article  ADS  Google Scholar 

  12. Hu, M., Zhang, X., Poulikakos, D.: Anomalous thermal response of silicene to uniaxial stretching. Phys. Rev. B 87, 195417 (2013)

    Article  ADS  Google Scholar 

  13. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    Article  ADS  Google Scholar 

  14. Nika, D., Ghosh, S., Pokatilov, E., Balandin, A.: Lattice thermal conductivity of graphene flakes: comparison with bulk graphite. Appl. Phys. Lett. 94, 203103 (2009)

    Article  ADS  Google Scholar 

  15. Yang, K., Cahangirov, S., Cantarero, A., Rubio, A., D’Agosta, R.: Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B 89, 125403 (2014)

    Article  ADS  Google Scholar 

  16. Zberecki, K., Wierzbicki, M., Barnaś, J., Swirkowicz, R.: Thermoelectric effects in silicene nanoribbons. Phys. Rev. B 88, 115404 (2013)

    Article  ADS  Google Scholar 

  17. Dávila, M.E., Xian, L., Cahangirov, S., Rubio, A., Le Lay, G.: Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16, 095002 (2014)

    Article  Google Scholar 

  18. Li, L., Lu, S.Z., Pan, J., Qin, Z., Wang, Y.Q., Wang, Y., Cao, G.Y., Du, S., Gao, H.J.: Buckled germanene formation on Pt(111). Adv. Mater. 26, 4820–4824 (2014)

    Article  Google Scholar 

  19. Zhang, J., Gao, J., Liu, L., Zhao, J.: Electronic and transport gaps of graphene opened by grain boundaries. J. Appl. Phys. 112, 053713 (2012)

    Article  ADS  Google Scholar 

  20. Nika, D.L., Pokatilov, E.P., Askerov, A.S., Balandin, A.A.: Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009)

    Article  ADS  Google Scholar 

  21. Zhou, S.: Bongiorno. A.: Density functional theory modeling of multilayer “epitaxial” graphene oxide. Acc. Chem. Res. 47, 3331–3339 (2014)

    Article  Google Scholar 

  22. Troullier, N., Martins, J. L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991)

    Article  ADS  Google Scholar 

  23. Perdew, J. P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  24. Cai, Y., Lan, J., Zhang, G.: Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89, 035438 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the China Postdoctoral Science Foundation (2015 M570243), China National Science Foundation (11504041), the Fundamental Research Funds for the Central Universities of China (DUT15RC(3)014), the Scientific Research Fund of Liaoning Provincial Education Department (L2015124), and Natural Science Foundation of Jiangsu Province (BK2012255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zhou, S., Bai, Y. et al. Tunable Thermal Conductivity of Silicene by Germanium Doping. J Supercond Nov Magn 29, 717–720 (2016). https://doi.org/10.1007/s10948-015-3305-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3305-1

Keywords

Navigation