Skip to main content
Log in

Spintronics with Magnetic Nanomolecules and Graphene Flakes

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We show how the magnetization of nano-objects can be efficiently regulated. Several types of nanosystems are considered: magnetics nanomolecules, magnetic nanoclusters, polarized nanomolecules, and magnetic graphene. These nano-objects and the structures composed of them enjoy many common properties, with the main difference being in the type of particle interactions. The possibility of governing spin dynamics is important for spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kahn, O.: Molecular Magnetism. VCH, New York (1995)

    Google Scholar 

  2. Barbara, B., Thomas, L., Lionti, F., Chioresku, I., Sulpice, A.: Macroscopic quantum tunneling in molecular magnets. J. Magn. Magn. Mater. 200, 167–182 (1999)

    Article  ADS  Google Scholar 

  3. Yukalov, V.I.: Superradiant operation of spin masers. Laser Phys. 12, 1089–1103 (2002)

    Google Scholar 

  4. Yukalov, V.I., Yukalova, E.P.: Coherent nuclear radiation. Phys. Part. Nucl. 35, 348–382 (2004)

    Google Scholar 

  5. Kodama, R.H.: Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359–372 (1999)

    Article  ADS  Google Scholar 

  6. Hadjipanays, G.C.: Nanophase hard magnets. J. Magn. Magn. Mater. 200, 373 (1999)

    Article  ADS  Google Scholar 

  7. Wernsdorfer, W.: Classical and quantum magnetization reversal studied in nanometer-sized particles and clusters. Adv. Chem. Phys. 118, 99–190 (2001)

    Google Scholar 

  8. Ferre, J.: Dynamics of magnetization reversal: from continuous to patterned ferromagnetic films. Adv. Chem. Phys. 83, 127–185 (2002)

    Google Scholar 

  9. Bedanta, S., Kleemann, W.: Supermagnetism. J. Phys. D 42, 013001 (2009)

    Article  ADS  Google Scholar 

  10. Berry, C.C.: Progress in functionalization of magnetic nanoparticles for application in biomedicine. J. Phys. D 42, 224003 (2009)

    Article  ADS  Google Scholar 

  11. Beveridge, J.S., Stephens, J.R., Willimas, M.E.: The use of magnetic nanoparticles in analytical chemistry. Annu. Rev. Anal. Chem. 4, 251–273 (2011)

    Article  Google Scholar 

  12. Chen, H.Y., Lee, Y., Bowen, S., Hilty, C.: Spontaneous emission of NMR signals in hyperpolarized proton spin systems. J. Magn. Res. 208, 204–209 (2011)

    Article  ADS  Google Scholar 

  13. Krishnan, V.V., Murali, N.: Radiation damping in modern NMR experiments: progress and chalenges. Prog. Nucl. Magn. Res. Spectrosc. 68, 41–57 (2013)

  14. Yaziev, O.V.: Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 73, 056501 (2010)

    Article  ADS  Google Scholar 

  15. Katsnelson, M.I.: Graphene: Carbon in two dimensions. Cambridge University, Cambridge (2012)

    Book  Google Scholar 

  16. Enoki, T., Ando, T.: Physics and Chemistry of Graphene. Pan Stanford, Singapore (2013)

    Book  Google Scholar 

  17. Yukalov, V.I.: Origin of pure spin superradiance. Phys. Rev. Lett. 75, 3000–3003 (1995)

    Article  ADS  Google Scholar 

  18. Yukalov, V.I.: Nonlinear spin dynamics in nuclear magnets. Phys. Rev. B 53, 9232–9250 (1996)

    Article  ADS  Google Scholar 

  19. Birman, J.L., Nazmitdinov, R.G., Yukalov, V.I.: Effects of symmetry breaking in finite quantum systems. Phys. Rep. 526, 1–91 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kiselev, Y.F., Shumovsky, A.S., Yukalov, V.I.: Thermal-noise induced radio frequency superradiance in resonator. Mod. Phys. Lett. B 3, 1149–1156 (1989)

    Article  ADS  Google Scholar 

  21. Allen, L., Eberly, J.H.: Optical resonance and two-level atoms. Wiley, New York (1975)

    Google Scholar 

  22. Bourhill, J., Goryachev, M., Farr, W.G., Tobar, M.E.: Superradiant behavior of C r 3+ ions in ruby revealed by whispering gallery modes. arXiv:1504.07733 (2015)

  23. Yukalov, V.I.: Coherent dynamics of radiating atomic systems in pseudospin representation. Laser Phys. 24, 094015 (2014)

    Article  ADS  Google Scholar 

  24. Yukalov, V.I., Yukalova, E.P.: Absence of spin superradiance in resonatorless magnets. Laser Phys. Lett. 2, 302–308 (2005)

    Article  ADS  Google Scholar 

  25. Yukalov, V.I.: Spin superradiance versus atomic superradiance. Laser Phys. Lett. 2, 356–361 (2005)

    Article  ADS  Google Scholar 

  26. Purcell, E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  27. Davis, C.L., Kaganov, I.V., Henner, V.K.: Superradiation in magnetic resonance. Phys. Rev. B 62, 12328–12337 (2000)

    Article  ADS  Google Scholar 

  28. Kharebov, P.V., Henner, V.K., Yukalov, V.I.: Optimal conditions for magnetization reversal of nanocluster assemblies with random properties. J. Appl. Phys. 113, 043902 (2013)

    Article  ADS  Google Scholar 

  29. Dimian, M.: Nonlinear spin dynamics and ultra-fast precessional switching. Ph.D. Thesis, University of Maryland (2005)

  30. Wang, H., Yu, Y., Sun, Y., Chen, Q.: Magnetic nanochains. Nano 6, 1–17 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Yukalov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yukalov, V.I., Henner, V.K., Belozerova, T.S. et al. Spintronics with Magnetic Nanomolecules and Graphene Flakes. J Supercond Nov Magn 29, 721–726 (2016). https://doi.org/10.1007/s10948-015-3291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3291-3

Keywords

Navigation