Skip to main content
Log in

Generalized BEC and Crossover Theories of Superconductors and Ultracold Bosonic and Fermionic Gases

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The generalized Bose-Einstein condensation (GBEC) theory of superconductivity hinges on three distinct new ingredients: (a) treatment of Cooper pairs as real bosons, (b) inclusion of two-hole pairs on an equal footing with two-electron ones, and (c) insertion in the resulting ternary ideal boson-fermion gas of boson-fermion vertex interactions that drive formation/disintegration processes. Besides subsuming both BCS and BEC theories as well as the well-known crossover picture as special cases, GBEC leads to several-orders-of-magnitude enhancements in the critical superconducting temperature T c . The crossover picture is applicable also to ultracold atomic clouds, both bosonic and fermionic. But known low-density expansions involving the interatomic scattering length a diverge term-by-term around the so-called unitary zone about the Feshbach resonance where a itself diverges. However, expanding a in powers of the attractive part of the interatomic potential renders smooth, divergence-free low-density expansions whose convergence can be accelerated with Padé approximants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson, M.H., Ensher, J.R., Wieman, M.R., Cornell, E.A.: Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  2. Bradley, C.C., Sackett, C.A., Tollett, J.J., Hulet, R.G.: Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  3. Davis, K.B., Mewes, M.O., Andrews, M.R., van Drutten, N.J., et al.: Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  4. Fried, D.G., Killian, T.C., Willmann, L., Landhuis, D., et al.: Phys. Rev. Lett. 81, 3811 (1998)

    Article  ADS  Google Scholar 

  5. Cornish, S.L., Claussen, N.R., Roberts, J.L., et al.: Phys. Rev. Lett. 85, 1795 (2000)

    Article  ADS  Google Scholar 

  6. Pereira Dos Santos, F., Léonard, J., Wang, J., et al. Phys. Rev. Lett. 86, 3459 (2001)

    Article  ADS  Google Scholar 

  7. Mondugno, G., Ferrari, G., Roati, G., Brecha, R.J., et al.: Science 294, 1320 (2001)

    Article  ADS  Google Scholar 

  8. Weber, T., Herbig, J., Mark, M., et al.: Science 299, 232 (2003)

    Article  ADS  Google Scholar 

  9. Griesmaier, A., Werner, J., Hensler, S., et al.: Phys. Rev. Lett. 94, 160–401 (2005)

    Article  Google Scholar 

  10. Takasu, Y., Maki, K., Komori, K., Takano, T., et al. Phys. Rev. Lett. 91, 040–404 (2003)

    Article  Google Scholar 

  11. Fukuhara, T., Sugawa, S., Takahashi, Y.: Phys. Rev. A 76, 051–604 (2007)

    Article  Google Scholar 

  12. Fukuhara, T., Sugawa, S., Takasu, Y., Takahashi, Y.: Phys. Rev. A 79, 021–601 (2009)

    Google Scholar 

  13. Stellmer, S., Tey, M.K., Grimm, R., Schreck, F.: Phys. Rev. A 82, 041–602 (2010)

    Article  Google Scholar 

  14. Greiner, M., Regal, C.A., Jin, D.S.: Nature 426, 537 (2003)

    Article  ADS  Google Scholar 

  15. Zwierlein, M.W., Stan, C.A., Schunck, C.H., et al.: Phys. Rev. Lett. 91, 250–401 (2003)

    Google Scholar 

  16. Cooper, L.N.: Phys. Rev. 104, 1189 (1956)

    Article  ADS  MATH  Google Scholar 

  17. Leggett, A.J.: J. Phys. (Paris) Colloq. 41, C7–19 (1980)

    Article  Google Scholar 

  18. Randeria, M.: Bose-Einstein condensation. In: Griffin, A., Snoke, D.W., Stringari, S. (eds.), p. 355. Cambridge University Press, Cambridge (1995)

  19. Labbé, J., Barisic, S., Friedel, J.: Phys. Rev. Lett. 19, 1039 (1967)

    Article  ADS  Google Scholar 

  20. Eagles, D.M.: Phys. Rev. 186, 456 (1969)

    Article  ADS  Google Scholar 

  21. Carter, R.M., Casas, M., Getino, J.M., de Llano, M., et al.: Phys. Rev. B 52, 16149 (1995)

    Article  ADS  Google Scholar 

  22. Buendía, E., Guardiola, R., de Llano, M.: At. Data Nucl. Data Tables 42, 293 (1989)

    Article  ADS  Google Scholar 

  23. Baker, G.A., Jr., Gutiérrez, G., de Llano, M.: Ann. Phys. N.Y. 153, 283 (1984)

    Article  ADS  Google Scholar 

  24. Blatt, J.M.: Theory of Superconductivity. Academic, New York (1964)

    MATH  Google Scholar 

  25. Schafroth, M.R.: Phys. Rev 96, 1442 (1954)

    Article  ADS  Google Scholar 

  26. Schafroth, M.R., Butler, S.T., Blatt, J.M.: Helv. Phys. Acta 30, 93 (1957)

    MathSciNet  Google Scholar 

  27. Schafroth, M.R.: Sol. State Phys. 10, 293 (1960)

    Google Scholar 

  28. Bogoliubov, N.N.: JETP 34, 41 (1958)

    MathSciNet  Google Scholar 

  29. Bogoliubov, N.N., Tolmachev, V.V., Shirkov, D.V., Fortschr. Phys.: 6, 605 (1958). or also in A New Method in the Theory of Superconductivity Consultants Bureau, NY,1959

  30. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Ranninger, J., Robaszkiewicz, S.: Phys. B 135, 468 (1985)

    Article  Google Scholar 

  32. Ranninger, J., Micnas, R., Robaszkiewicz, S.: Ann. Phys. Fr 13, 455 (1988)

    Article  ADS  Google Scholar 

  33. Micnas, R., Ranninger, J., Robaszkiewicz, S.: Rev. Mod. Phys. 62, 113 (1990)

    Article  ADS  Google Scholar 

  34. Micnas, R., Robaszkiewicz, S., Bussmann-Holder, A.: Phys. Rev. B 66, 104–516 (2002)

    Article  Google Scholar 

  35. Micnas, R., Robaszkiewicz, S., Bussmann-Holder, A.: Struct. Bond 114, 13 (2005)

    Google Scholar 

  36. Friedberg, R., Lee, T.D.: Phys. Rev. B 40, 6745 (1989)

    Article  ADS  Google Scholar 

  37. Friedberg, R., Lee, T.D., Ren, H.-C.: Phys. Rev. B 42, 4122 (1990)

    Article  ADS  Google Scholar 

  38. Friedberg, R., Lee, T.D., Ren, H.-C.: Phys. Lett. A 152, 417–423 (1991)

    Article  ADS  Google Scholar 

  39. Friedberg, R., Lee, T.D., Ren, H.-C.: Phys. Rev. B 45, 10732 (1992)

    Article  ADS  Google Scholar 

  40. Casas, M., Rigo, A., de Llano, M., Rojo, O., Solís, M.A.: Phys. Lett. A 245, 5 (1998)

    Article  ADS  Google Scholar 

  41. Tolmachev, V.V.: Lett. Phys. A 266, 400 (2000)

    Article  Google Scholar 

  42. de Llano, M., Tolmachev, V.V.: Ukrainian J.Phys. 55, 79 (2010). and refs. therein

    Google Scholar 

  43. Grether, M., de Llano, M., Tolmachev, V.V.: Int. J. Quant. Chem 112, 3018 (2012)

    Article  Google Scholar 

  44. Nambu, Y.: Phys. Rev. 117, 648 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  45. Uemura, Y.J., Phys, J.: Condens. Matter 16, S4515 (2004). and more recently in Physica B, 1, 374 2006

  46. Lee, T.D., Huang, K., Yang, C.N. Phys. Rev. 106, 1135 (1957). [CAS]; S.T. Belyaev, Sov. Phys. JETP 7, 289 (1958); T.T. Wu, Phys. Rev. 115, 1390 (1959); N.M. Hugenholtz and D. Pines, ibid. 116, 489, 1959

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Baker, G.A., Jr., de Llano, M., Pineda, J.: Phys. Rev. B 24, 6304 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  48. de Llano, M.: Mecánica Cuántica (Facultad de Ciencias, UNAM, 2006) p. 199 Third revised Ed. 2015 [in Spanish]

  49. Baker, G.A., Jr.: Rev. Mod. Phys. 43, 479 (1971)

    Article  ADS  Google Scholar 

  50. Baker, G.A., Jr., Benofy, L.P.: Phys. Rev. A 26, 3575 (1982)

    Article  ADS  Google Scholar 

  51. Wolfram, S.: The MATHEMATICA Book, 4th. Ed. p. 764 Wolfram Media IL (1999)

Download references

Acknowledgments

IC thanks CONACyT (Mexico) for postgraduate grant 260978, MG acknowledges partial support from UNAM-DGAPA-PAPIIT (Mexico) grant IN116914 and MdeLl from UNAM-DGAPA-PAPIIT (Mexico) grant IN100314.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Chávez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chávez, I., Grether, M. & de Llano, M. Generalized BEC and Crossover Theories of Superconductors and Ultracold Bosonic and Fermionic Gases. J Supercond Nov Magn 29, 691–695 (2016). https://doi.org/10.1007/s10948-015-3288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3288-y

Keywords

Navigation