Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 12, pp 3481–3486 | Cite as

The Role of Quantum Interference Effects in Normal-State Transport Properties of Electron-Doped Cuprates

  • P. Orgiani
  • A. Galdi
  • C. Sacco
  • R. Arpaia
  • S. Charpentier
  • F. Lombardi
  • C. Barone
  • S. Pagano
  • D. G. Schlom
  • L. Maritato
Original Paper

Abstract

The normal-state resistivity of thin films of the infinite-layer electron-doped cuprate Sr 1−xLa xCuO δ has been investigated. Under-doped samples, which clearly show a metal-to-insulator transition (MIT) at low temperatures, have allowed the determination of the fundamental physical mechanism behind the upturn of the resistivity, namely the quantum interference effects (QIEs) in three-dimensional systems. The occurrence of weak localization effects has been unambiguously proven by low-frequency voltage spectral density measurements, which show a linear dependence of the 1/f noise on the applied bias current at low temperatures. The identification of the QIEs at low temperatures has therefore allowed the determination of the high-temperature non-Fermi liquid metallic phase, which is dominated by a linear temperature dependence of the resistivity for all of the samples investigated.

Keywords

Superconductivity Metal-insulator-transition Electron-doped cuprates 

References

  1. 1.
    Armitage, N.P., Fournier, P., Greene, R.L.: Rev. Mod. Phys. 82, 2421 (2010)CrossRefADSGoogle Scholar
  2. 2.
    Tanda, S., Honma, M., Nakayama, T.: Phys. Rev. B 43, 8725 (1991)CrossRefADSGoogle Scholar
  3. 3.
    Liu, Y., Haviland, D.B., Nease, B., Goldman, A.M.: Phys. Rev. B 47, 5931 (1993)CrossRefADSGoogle Scholar
  4. 4.
    Goldman, A.M., Markovic, N.: Phys. Today 51, 39 (1998)CrossRefGoogle Scholar
  5. 5.
    Sekitani, T., Naito, M., Miura, N.: Phys. Rev. B 67, 174503 (2003)CrossRefADSGoogle Scholar
  6. 6.
    Hagen, S. J., Xu, X. Q., Jiang, W., Peng, J. L., Li, Z. Y., Greene, R. L.: Phys. Rev. B 45(R), 515 (1992)CrossRefADSGoogle Scholar
  7. 7.
    Fournier, P., Mohanty, P., Maiser, E., Darzens, S., Venkatesan, T., Lobb, C.J., Czjzek, G., Webb, R.A., Greene, R.L.: Phys. Rev. Lett. 81, 4720 (1998)CrossRefADSGoogle Scholar
  8. 8.
    Charpentier, S., Roberge, G., Godin-Proulx, S., Béchamp-Laganière, X., Truong, K.D., Fournier, P., Rauwel, P.: Phys. Rev. B 81, 104509 (2010)CrossRefADSGoogle Scholar
  9. 9.
    Tolpygo, S.K., Lin, J.-Y., Gurvitch, M., Hou, S.Y., Phillips, J.M.: Phys. Rev. B 53, 12454 (1996)CrossRefADSGoogle Scholar
  10. 10.
    Orgiani, P., Aruta, C., Balestrino, G., Born, D., Maritato, L., Medaglia, P.G., Stornaiuolo, D., Tafuri, F., Tebano, A.: Phys. Rev. Lett. 98, 036401 (2007)CrossRefADSGoogle Scholar
  11. 11.
    Tsuei, C.C., Gupta, A., Koren, G: Physica C 161, 415 (1989)CrossRefADSGoogle Scholar
  12. 12.
    Butch, N.P., Jin, K., Kirshenbaum, K., Greene, R.L.: J. Paglione PNAS 109, 8440 (2012)CrossRefGoogle Scholar
  13. 13.
    Jin, K., Butch, N.P., Kirshenbaum, K., Paglione, J., Greene, R.L.: Nature 476, 73 (2011)CrossRefGoogle Scholar
  14. 14.
    Shaked, H., Keane, P. M., Rodriguez, J. C.: Crystal structures of the high-T C superconducting copper-oxides. Elsevier, Amsterdam (1994)Google Scholar
  15. 15.
    Balestrino, G., Lavanga, S., Medaglia, P. G., Orgiani, P., Paoletti, A., Pasquini, G., Tebano, A., Tucciarone, A.: Appl. Phys. Lett. 79, 99 (2001)CrossRefADSGoogle Scholar
  16. 16.
    Abrikosov, A.A.: Fundamentals of the theory of metals. North-Holland, Amsterdam (1988)Google Scholar
  17. 17.
    Maritato, L., Galdi, A., Orgiani, P., Harter, J.W., Schubert, J., Shen, K.M., Schlom, D.G: J. Appl. Phys 113, 053911 (2013)CrossRefADSGoogle Scholar
  18. 18.
    Harter, J.W., Maritato, L., Shai, D.E., Monkman, E.J., Nie, Y., Schlom, D.G., Shen, K.M.: Phys. Rev. Lett. 109, 267001 (2012)CrossRefADSGoogle Scholar
  19. 19.
    Van der Pauw, L. J.: Philips Res. Rep. 13, 1 (1958)Google Scholar
  20. 20.
    Lee, P.A., Ramakrishnan, T.V.: Rev. Mod. Phys. 57, 287 (1985)CrossRefADSGoogle Scholar
  21. 21.
    Maritato, L., Adamo, C., Barone, C., De Luca, G.M., Galdi, A., Orgiani, P., Petrov, A.Yu.: Phys. Rev. B 73, 094456 (2006)CrossRefADSGoogle Scholar
  22. 22.
    Kumar, D., Sankar, J., Narayan, J., Singh, R.K., Majumdar, A.K.: Phys. Rev. B 65, 094407 (2002)CrossRefADSGoogle Scholar
  23. 23.
    Coey, J.M.D., Viret, M., Ranno, L., Ounadjela, K.: Phys. Rev. Lett. 75, 3910 (1995)CrossRefADSGoogle Scholar
  24. 24.
    Barone, C., Guarino, A., Nigro, A., Romano, A., Pagano, S.: Phys. Rev. B 80, 224405 (2009)CrossRefADSGoogle Scholar
  25. 25.
    Barone, C., Romeo, F., Galdi, A., Orgiani, P., Maritato, L., Guarino, A., Nigro, A., Pagano, S.: Phys. Rev. B 87, 245113 (2013)CrossRefADSGoogle Scholar
  26. 26.
    Barone, C., Galdi, A., Pagano, S., Quaranta, O., Méchin, L., Routoure, J.-M., Perna, P.: Rev. Sci. Instrum. 78, 093905 (2007)CrossRefADSGoogle Scholar
  27. 27.
    Barone, C., Romeo, F., Pagano, S., Attanasio, C., Carapella, G., Cirillo, C., Galdi, A., Grimaldi, G., Guarino, A., Leo, A., Nigro, A., Sabatino, P.: Sci. Rep. 5, 10705 (2015)CrossRefADSGoogle Scholar
  28. 28.
    Kogan, S.: Electronic noise and fluctuations in solids. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  29. 29.
    Mercone, S., et al.: Phys. Rev. B 71, 064415 (2005)CrossRefADSGoogle Scholar
  30. 30.
    Orgiani, P., Adamo, C., Barone, C., Galdi, A., Petrov, A.Yu., Schlom, D.G., Maritato, L.: Phys. Rev. B 76, 012404 (2007)CrossRefADSGoogle Scholar
  31. 31.
    Kittel, C.: Introduction to solid state physics. Wiley, New York (1996)Google Scholar
  32. 32.
    Mott, N.F.: Metal-insulator transition. Taylor & Francis, London (1990)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • P. Orgiani
    • 1
    • 7
  • A. Galdi
    • 1
    • 2
  • C. Sacco
    • 1
    • 6
  • R. Arpaia
    • 3
  • S. Charpentier
    • 3
  • F. Lombardi
    • 3
  • C. Barone
    • 1
    • 4
  • S. Pagano
    • 1
    • 4
  • D. G. Schlom
    • 5
  • L. Maritato
    • 1
    • 2
  1. 1.CNR-SPIN, UOS SalernoFisciano (SA)Italy
  2. 2.Department of Information Engineering, Electrical Engineering and Applied Mathematics,University of SalernoFisciano (SA)Italy
  3. 3.Quantum Device Physics Laboratory, Department of Microtechnology and NanoscienceChalmers University of TechnologyGöteborgSweden
  4. 4.Department of PhysicsUniversity of SalernoFisciano (SA)Italy
  5. 5.Department of Materials Science and EngineeringCornell University and Kavli Institute at Cornell for Nanoscale ScienceIthacaUSA
  6. 6.Department of Industrial EngineeringUniversity of SalernoFisciano (SA)Italy
  7. 7.CNR-IOM TASC LaboratoryTriesteItaly

Personalised recommendations