Skip to main content
Log in

A Comparative DFT and DFT+U Study on Magnetism in Nickel-Doped Wurtzite AlN

  • Review Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

GGA and GGA+U formalisms have been implemented to comparatively study the electronic and magnetic properties of the Ni-doped AlN wurtzite semiconductor within density functional theory. Electronic structure calculations have been performed for ferromagnetic and antiferromagnetic states of Ni x Al1−x N (x = 0.056 and 0.0625) by GGA and GGA+U schemes. It has been found that the GGA+U method increases the repulsion of the impurity bands in the gap of semiconductors. The magnetic moment of the atom impurity in Ni x Al1−x N (x = 0.056 and 0.0625) is higher than those of the anions bonded to it for both GGA and GGA+U. Ni (N) contributions to the magnetic moment of Ni x Al1−x N (x = 0.056 and 0.0625) decrease (increase) in NiN4 tetrahedron when using GGA+U. A magnetic moment per Ni atom of about 2.10 μB is predicted in Ni x Al1−x N for x = 0.056 with GGA approach for the most stable system. However, it was found that the ground state nature for Ni x Al1−x N (x = 0.056 and 0.625) changes from ferromagnetic to antiferromagnetic with the GGA+U approach for the Ni-Ni closest configuration. On the contrary, for the Ni-Ni farthest configuration both GGA and GGA+U formalisms predict a ferromagnetic ground state for Ni x Al1−x N (x = 0.056 and 0.0625). For intermediate Ni-Ni distances, both GGA and GGA+U schemes present almost the same energy differences and the same ferromagnetic ground state. The ferromagnetic ground state originates from the strong hybridization between Ni-d and N-p states. Additionally, it was found that the GGA+U formalism increases the magnetic moment per Ni atom for all Ni x Al1−x N (x = 0.056) ferromagnetic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B. 136, 3B (1964)

    Article  MathSciNet  Google Scholar 

  2. Kohn, W., Sham, L.J.: Self-consistent equations including exchange. Correlation Effects. Phys. Rev. B. 140, 4A (1965)

    MathSciNet  Google Scholar 

  3. Merabet, M., Rached, D., Benalia, S., Reshak, A.H., Bettahar, N., Righi, H., Baltache, H., Soyalp, F., Labair, M.: Half-metallic ferromagnetism in Al1-xCrxP and superlattices (AlP)n/(CrP)m by density functional calculations. Superlattices Microstruct. 65, 195–205 (2014)

    Article  ADS  Google Scholar 

  4. Osorio-Guillen, J., Lany, S., Barabash, S.V., Zunger, A.: Nonstoichiometry as a source of magnetism in otherwise nonmagnetic oxides magnetically interacting cation vacancies and their percolation. Phys. Rev. B 75, 184421 (2007)

    Article  ADS  Google Scholar 

  5. Boukra, A., Zaoui, A., Ferhat, M.: Magnetic properties of Mn doped BN compound. Superlattices Microstruct. 52, 880–884 (2012)

    Article  ADS  Google Scholar 

  6. Hamdad, N., Rozale, H., Lakdja, A., Chahed, A., Benhelal, O.: New theoretical investigation on the electronic structure and magnetic interaction for both cubic SrFeO3 and CaFeO3 oxides comparison between GGA and GGA + U approaches. Superlattices Microstruct. 63, 182–196 (2013)

    Article  ADS  Google Scholar 

  7. See table of most cited physics papers at http://tulane.edu/sse/pep/newsand-events/upload/most-cited-papers-1981-2010.pdf

  8. Beckea, A.D.: Perspective fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014)

    Article  Google Scholar 

  9. Hirohata, A., Takanashi, K.: Future perspectives for spintronic devices. J. Phys. D Appl. Phys. 47, 193001 (2014)

    Article  ADS  Google Scholar 

  10. Anisimov, V.I., Zaanen, J., Andersen, O.K.: Band theory and Mott insulators Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991)

    Article  ADS  Google Scholar 

  11. Janotti, A., Segev, D., Van de Walle, C.G.: Effects of cation d states on the structural and electronic properties of III-nitride and II-oxide wide-band-gap semiconductors. Phys. Rev. B 74, 045202 (2006)

    Article  ADS  Google Scholar 

  12. Sato, K., Dederichs, P.H., Katayama-Yoshida, H.: Curie temperatures of dilute magnetic semiconductors from LDA+U electronic structure calculations. Physica B 376, 639–642 (2006)

    Article  ADS  Google Scholar 

  13. Shick, A.B., Liechtenstein, A.I., Pickett, W.E.: Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis. Phys. Rev. B 60, 10763–10769 (1999)

    Article  ADS  Google Scholar 

  14. Gonzalez-Garcia, A., Lopez-Perez, W., Gonzalez-Hernandez, R.: First-principles LDA+U study of magnetism in Cu x In1xN. Solid State Commun. 156, 64–68 (2013)

    Article  ADS  Google Scholar 

  15. Molnar, R.J., Singh, R., Moustakas, T.D.: Blueviolet light emitting gallium nitride pn junctions grown by electron cyclotron resonance assisted molecular beam epitaxy. Appl. Phys. Lett. 66, 268 (1995)

    Article  ADS  Google Scholar 

  16. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y.: InGaN-based multi-quantum-well-structure laser diodes. Jpn. J. Appl. Phys. Part 2 35, L74–L76 (1996)

    Article  Google Scholar 

  17. Das, G.P., Rao, B.K., Jena, P., Kawazo, Y.: Dilute magnetic III–V semiconductor spintronics materials: a first-principles approach. Comp. Mater. Sci. 36, 84–90 (2006)

    Article  Google Scholar 

  18. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  ADS  Google Scholar 

  19. Ney, A., Rajaram, R., Farrow, R.F.C., Harris, J.S., Parkin, S.S.P.: Mn-and Cr-Doped InN A promising diluted magnetic semiconductor material. J. Supercond. Inc. Novel Magn. 18, 41–46 (2005)

    ADS  Google Scholar 

  20. Wu, Q.Y., Huang, Z.G., Wu, R., Chen, L.J.: Cu-doped AlN a dilute magnetic semiconductor free of magnetic cations from first-principles study. J. Phys. Condens. Matter. 19, 056209 (2007)

    Article  ADS  Google Scholar 

  21. Dahmane, F., Tadjer, A., Doumi, B., Mesri, D., Aourag, H.: Structural, electronic and magnetic properties of zinc-blende Ga1−x TM x N (TM= Cr, Mn, Fe, V) 26, 3339–3348 (2013)

  22. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for IIIV compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  23. Fan, S.W., Yao, K.L., Huang, Z.G., Zhang, J., Gao, G.Y., Du, G.H.: Ti-doped AlN potential n-type ferromagnetic semiconductor density functional calculations. Chem. Phys. Lett. 482, 62–65 (2009)

    Article  ADS  Google Scholar 

  24. Zhang, J.M., Li, H.H., Zhang, Y., Xu, K.W.: Structural, electronic and magnetic properties of the 3d transition-metal doped AlN nanotubes. Phys. E Low-Dim. Syst. Nanostruct. 43, 1249–1254 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  25. Li, H., Bao, H.Q., Song, B., Wang, W.J., Chen, X.L.: Observation of ferromagnetic ordering in Ni-doped AlN polycrystalline powders. Solid State Commun. 148, 406–409 (2008)

    Article  ADS  Google Scholar 

  26. Gao, X.D., Jiang, E.Y., Liu, H.H., Mi, W.B., Li, Z.Q., Wu, P., Bai, H.L.: Structure and RT ferromagnetism of Fe-doped AlN films. Appl. Surf. Sci. 253, 5431–5435 (2007)

    Article  ADS  Google Scholar 

  27. Sun, L.L., Yan, F.W., Gao, H.Y., Zhang, H.X., Zeng, Y.P., Wang, G.H., Li, J.M.: Structure and magnetic characteristics of nonpolar a-plane GaNMn films. J. Phys. D Appl. Phys. 41, 165004 (2008)

    Article  ADS  Google Scholar 

  28. Gonzalez-Garcia, A., Lopez-Perez, W., Gonzalez-Hernandez, R.: Theoretical study of magnetic ordering and electronic properties of Ag x Al1xN compounds. Solid State Commun. 151, 1794–1797 (2011)

    Article  ADS  Google Scholar 

  29. Kaczkowski, J., Jezierski, A.: Ab initio calculations of magnetic properties of wurtzite Al0.9375 TM 0.0625N (TM = V, Cr, Mn, Fe, Co, Ni). Acta Phys. Pol. A 115, 275 (2009)

    Google Scholar 

  30. Pan, A., Jian, J.K., Ablat, A., Li, J., Sun, Y.F., Wu, R.: Structure and magnetic properties of Ni-doped AlN films. J. Appl. Phys. 112, 053911 (2012)

    Article  ADS  Google Scholar 

  31. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  32. Blochl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  33. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  34. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  35. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  36. Monkhorst, H.J., Pack, J.D.: Special points for Brillonin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  37. Methfessel, M., Paxon, A.T.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989)

    Article  ADS  Google Scholar 

  38. Tanaka, M., Nakahata, S., Sogabe, K., Nakata, H.: Morphology and X-ray diffraction peak widths of aluminum nitride single crystals prepared by the sublimation method. Jpn. J. Appl. Phys., Part 2 36, L1062–L1064 (1997)

    Article  Google Scholar 

  39. Cheng, J., Zhou, J., Li, J., Dong, P., Wu, Z.: Magnetism in Cu-doped rutile SnO2 semiconductor induced by the RKKY interaction. J. Supercond. Nov. Magn. 27, 581–586 (2014)

    Article  Google Scholar 

  40. Gopal, P., Spaldin, N.A.: Magnetic interactions in transition-metal-doped ZnO An ab initio study. Phys. Rev. B 74, 094418 (2006)

    Article  ADS  Google Scholar 

  41. Yang, K., Dai, Y., Huang, B.: First-principles characterization of ferromagnetism in N-doped SrTiO3 and BaTiO3. Appl. Phys. Lett. 100, 062409 (2012)

    Article  ADS  Google Scholar 

  42. Yang, K., Dai, Y., Huang, B.: Density functional study of boron-doped anatase TiO2. J. Phys. Chem. C 114 (2010)

  43. Schilfgaarde, M.V., Mryasov, O.N.: Anomalous exchange interactions in III–V dilute magnetic semiconductors. Phys. Rev. B 63, 233205 (2001)

    Article  ADS  Google Scholar 

  44. Tandon, N., Das, G.P., Kshirsagar, A.: Electronic structure of diluted magnetic semiconductors Ga1-xMnxN and Ga1xCr x N. J. Phys. Condens. Matter 18 (2006)

  45. Munawar-Basha, S., Ramasubramanian, S., Thangavel, R., Rajagopalan, M., Kumar, J.: Magnetic properties of Ni doped gallium nitride with vacancy induced defect. J. Magn. Magn. Mater 322, 238–241 (2010)

    Article  ADS  Google Scholar 

  46. Belhadji, B., Bergqvist, L., Zeller, R., Dederichs, P.H., Sato, K., Katayama-Yoshida, H.: Trends of exchange interactions in dilute magnetic semiconductors. J. Phys. Condens. Matter 19, 436227 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research published in this paper was supported by Division de Investigación, Desarrollo e Innovación (DIDI) of Universidad del Norte, Barranquilla, Colombia. We thank Fachgebiet Material Modellierung, Institut für Materialwissenschaft, Technische Universität Darmstadt, Germany, for its warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. González-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-García, A., López-Pérez, W., Barragán-Yani, D. et al. A Comparative DFT and DFT+U Study on Magnetism in Nickel-Doped Wurtzite AlN. J Supercond Nov Magn 28, 3185–3192 (2015). https://doi.org/10.1007/s10948-015-3190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3190-7

Keywords

Navigation