Skip to main content

Modeling Intercalated Group-4-Metal Nitride Halide Superconductivity with Interlayer Coulomb Coupling

Abstract

Behavior consistent with Coulomb-mediated high- T C superconductivity is shown to be present in the intercalated group-4-metal nitride halides A x (S) y MNX, where the MNX host (M = Ti, Zr, Hf; X = Cl, Br) is partially intercalated with cations A x and optionally molecular species (S) y in the van der Waals gap between the halide X layers, expanding the basal-plane spacing d. The optimal transition temperature is modeled by T C0ζ −1(σ/ A)1/2, where the participating fractional charge per area per formula unit σ/A and the distance ζ, given by the transverse A x -X separation (ζ < d), govern the interlayer Coulomb coupling. From experiment results for β-form compounds based on Zr and Hf, in which concentrations x of A x are varied, it is shown that σ = γ[ v(x optx 0)], where x opt is the optimal doping, x 0 is the onset of superconducting behavior, v is the A x charge state, and γ = 1/8 is a factor determined by the model. Observations of T C < T C0 in the comparatively more disordered α-A x (S) y TiNX compounds are modeled as pair breaking by remote Coulomb scattering from the A x cations, which attenuates exponentially with increasing ζ. The T C0 values calculated for nine A x (S) y MNCl compounds, shown to be optimal, agree with the measured T C to within experimental error. The model for T C0 is also found to be consistent with the absence of high- T C characteristics for A x MNX compounds in which a spatially separated intercalation layer is not formed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Yamanaka, S., Kawaji, H., Hotekama, K., Ohashi, M.: Adv. Mater. 8, 771 (1996)

    Article  Google Scholar 

  2. Shamoto, S., Takeuchi, K., Yamanaka, S., Kajitani, T.: Physica C 402, 283 (2004)

    Article  ADS  Google Scholar 

  3. Oró-Solé, J., Frontera, C., Beltrán-Porter, D., Lebedev, O.I., Van Tendeloo, G., Fuertes, A.: Mater. Res. Bull. 41, 934 (2006)

    Article  Google Scholar 

  4. Fogg, A.M., Green, V.M., O’Hare, D.: J. Mater. Chem. 9, 1547 (1999) and private communication

    Article  Google Scholar 

  5. Shamoto, S., Kato, T., Ono, Y., Miyazaki, Y., Ohoyama, K., Ohashi M., Yamaguchi, Y., Kajitani, T.: Physica C 306, 7 (1998)

    Article  ADS  Google Scholar 

  6. Chen, X., Zhu, L., Yamanaka, S.: J. Solid State Chem. 169, 149 (2002)

    Article  ADS  Google Scholar 

  7. Kasahara, Y., Kishiume, T., Kobayashi, K., Taguchi, Y., Iwasa, Y.: Phys. Rev. B 82, 054504 (2010)

    Article  ADS  Google Scholar 

  8. Zhang, S., Tanaka, M., Onimaru, T., Takabatake, T., Isikawa, Y., Yamanaka, S.: Supercond. Sci. Technol. 26, 045017 (2013)

    Article  ADS  Google Scholar 

  9. Zhang, S., Tanaka, M., Zhu, H., Yamanaka, S.: Supercond. Sci. Technol. 26, 085015 (2013)

    Article  ADS  Google Scholar 

  10. Zhang, S., Tanaka, M., Yamanaka, S.: Phys. Rev. B 86, 024516 (2012) and private communication

    Article  ADS  Google Scholar 

  11. Zhang, S., Tanaka, M., Watanabe, E., Zhu, H., Inumaru, K., Yamanaka, S.: Supercond. Sci. Technol. 26, 122001 (2013)

    Article  ADS  Google Scholar 

  12. Yamanaka, S.: J. Mater. Chem. 20, 2922 (2010)

    Article  Google Scholar 

  13. Schurz, C.M., Shlyk, L., Schleid, T., Niewa, R.: Z. Kristallogr. 226, 395 (2011)

    Article  Google Scholar 

  14. Tou, H., Maniwa, Y., Koiwasaki, T., Yamanaka, S.: Phys. Rev. B 63, 020508(R) (2000)

    Article  Google Scholar 

  15. Ito, T., Fudamoto, Y., Fukaya, A., Gat-Malureanu, I.M., Larkin, M.I., Russo, P.L., Savici, A., Uemura, Y.J., Groves, K., Breslow, R., Hotehama, K., Yamanaka, S., Kyriakou, P., Rovers, M., Luke, G.M., Kojima, K.M.: Phys. Rev. B 69, 134522 (2004)

    Article  ADS  Google Scholar 

  16. Taguchi, Y., Kawabata, T., Takano, T., Kitora, A., Kato, K., Takata, M., Iwasa, Y.: Phys. Rev. B 76, 064508 (2007)

    Article  ADS  Google Scholar 

  17. Tou, H., Maniwa, Y., Yamanaka, S.: Phys. Rev. B 67, 100509(R) (2003)

    Article  ADS  Google Scholar 

  18. Yamanaka, S., Hotehama, K., Kawaji, H.: Nature 392, 580 (1998)

    Article  ADS  Google Scholar 

  19. Taguchi, Y., Kitora, A., Iwasa, Y.: Phys. Rev. Lett. 97, 107001 (2006)

    Article  ADS  Google Scholar 

  20. Takano, T., Kishiume, T., Taguchi, Y., Iwasa, Y.: Phys. Rev. Lett. 100, 247005 (2008)

    Article  ADS  Google Scholar 

  21. Harshman, D.R., Fiory, A.T.: Phys. Rev. B 90, 186591 (2014)

    Article  ADS  Google Scholar 

  22. Zhang, S., Tanaka, M., Yamanaka, S.: Phys. Rev. B 90, 186502 (2014)

    Article  ADS  Google Scholar 

  23. Harshman, D.R., Fiory, A.T., Dow, J.D.: J. Phys. Condens. Matter 23, 295701 (2011). corrigendum, Harshman D. R., Fiory A. T. and Dow J. D.: J. Phys.: Condens. Matter 23, 349501 (2011)

    Article  Google Scholar 

  24. Wheatley, J.M., Hsu, T.C., Anderson, P.W.: Nature (London) 333, 121 (1988)

    Article  ADS  Google Scholar 

  25. Wheatley, J.M., Hsu, T.C., Anderson, P.W.: Phys. Rev. B 37, 5897(R) (1988)

    Article  ADS  Google Scholar 

  26. Bill, A., Morawitz, H., Kresin, V.Z.: Phys. Rev. B 66, 100501(R) (2002)

    Article  ADS  Google Scholar 

  27. Bill, A., Morawitz, H., Kresin, V.Z.: Phys. Rev. B 68, 144519 (2003)

    Article  ADS  Google Scholar 

  28. Yamanaka, S., Yasunaga, T., Yamaguchi, K., Tagawa, M.: J. Mater. Chem. 19, 2573 (2009)

    Article  Google Scholar 

  29. Yin, Q., Ylvisaker, E.R., Pickett, W.E.: Phys. Rev. B 83, 014509 (2011)

    Article  ADS  Google Scholar 

  30. Kusakabe, K.: J. Phys. Chem. Solids 73, 1546 (2012)

    Article  ADS  Google Scholar 

  31. Zaanen, J., Chakravarty, S., Senthil, T., Anderson, P., Lee, P., Schmalian, J., Imada, M., Pines, D., Randeria, M., Varma, C., Vojta, M., Rice, M.: Nature Physics 2, 138 (2006)

    Article  Google Scholar 

  32. Akashi, R., Nakamura, K., Arita, R., Imada, M.: Phys. Rev. B 86, 054513 (2012)

    Article  ADS  Google Scholar 

  33. Shamoto, S., Iizawa, K., Kato, T., Yamada, M., Yamanaka, S., Ohoyama, K., Ohashi, M., Yamaguchi, Y., Kajitani, T.: J. Phys. Chem. Solids 60, 1511 (1999)

    Article  ADS  Google Scholar 

  34. Baker, P.J., Lancaster, T., Blundell, S.J., Pratt, F.L., Brooks, M.L., Kwon, S.-J.: Phys. Rev. Lett. 102, 087002 (2009)

    Article  ADS  Google Scholar 

  35. Yamanaka, S.: Annu. Rev. Mater. Sci. 30, 53 (2000)

    Article  ADS  Google Scholar 

  36. Ando, T., Fowler, A.B., Stern, F.: Rev. Mod. Phys. 54, 437 (1982)

    Article  ADS  Google Scholar 

  37. Harshman, D.R., Fiory, A.T.: Phys. Rev. B 86, 144533 (2012)

    Article  ADS  Google Scholar 

  38. Harshman, D.R., Fiory, A.T.: J. Phys. Condens. Matter 24, 135701 (2012)

    Article  ADS  Google Scholar 

  39. Harshman, D.R., Fiory, A.T.: J. Phys. Chem. Solids 85, 106 (2015)

    Article  Google Scholar 

  40. Allen, P.B., Dynes, R.C.: Phys. Rev. B 12, 905 (1975)

    Article  ADS  Google Scholar 

  41. Bourne, L.C., Zettl, A., Barbee, T.W. III, Cohen, M.L.: Phys. Rev. B 36, 3990 (1987)

    Article  ADS  Google Scholar 

  42. Kresin, V.Z.: Phys. Lett. A 122, 434 (1987)

    Article  ADS  Google Scholar 

  43. Kawaji, H., Hotehama, K., Yamanaka, S.: Chem. Mater. 9, 2127 (1997)

    Article  Google Scholar 

  44. Yokoya, T., Takeuchi, T., Tsuda, S., Kiss, T., Higuchi, T., Shin, S., Iizawa, K., Shamoto, S., Kajitani, T., Takahashi, T.: Phys. Rev. B 70, 193103 (2004)

    Article  ADS  Google Scholar 

  45. Tou, H., Oshiro, S., Kotegawa, H., Taguchi, Y., Kishiume, Y., Kasahara, Y., Iwasa, Y.: Physica C 470, S658 (2010)

    Article  ADS  Google Scholar 

  46. Takano, T., Kasahara, Y., Oguchi, T., Hase, I., Taguchi, Y., Iwasa, Y.: J. Phys. Soc. Jpn. 80, 023702 (2011)

    Article  ADS  Google Scholar 

  47. Takano, T., Kitora, A., Taguchi, Y., Iwasa, Y.: Phys. Rev. B 77, 104518 (2008)

    Article  ADS  Google Scholar 

  48. Harshman, D.R., Dow, J.D., Fiory, A.T.: Phys. Rev. B 77, 024523 (2008)

    Article  ADS  Google Scholar 

  49. Harshman, D.R., Dow, J.D., Fiory, A.T.: Phys. Rev. B 80, 136502 (2009)

    Article  ADS  Google Scholar 

  50. Grimaldi, C.: J. Phys. Condens. Matter 12, 1329 (2000)

    Article  ADS  Google Scholar 

  51. Hiraishi, M., Kadono, R., Miyazaki, M., Takeshita, S., Taguchi, Y., Kasahara, Y., Takano, T., Kishiume, T., Iwasa, Y.: Phys. Rev. B 81, 014525 (2010)

    Article  ADS  Google Scholar 

  52. Glazov, M.M., Sherman, E.Ya., Dugaev, V.K.: Physica E 42, 2157 (2010)

    Article  ADS  Google Scholar 

  53. Weht, R., Filippetti, A., Pickett, W.E.: Europhys. Lett. 48, 320 (1999)

    Article  ADS  Google Scholar 

  54. Hase, I., Nishihara, Y.: Phys. Rev. B 60, 1573 (1999)

    Article  ADS  Google Scholar 

  55. Zhu, L., Yamanaka, S.: Chem. Mater. 15, 1897 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Shuai Zhang, Prof. Andrew M. Fogg, and Prof. Robert F. Marzke for providing helpful and important information.

Compliance with Ethical Standards

Funding

This study was supported by Physikon Research Corporation (Project No. PL-206) and the New Jersey Institute of Technology.

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale R. Harshman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harshman, D.R., Fiory, A.T. Modeling Intercalated Group-4-Metal Nitride Halide Superconductivity with Interlayer Coulomb Coupling. J Supercond Nov Magn 28, 2967–2978 (2015). https://doi.org/10.1007/s10948-015-3147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3147-x

Keywords

  • Doped metal nitride halides
  • Transition temperature
  • Coulombic mediation