Skip to main content
Log in

Stabilization Time of Josephson Tunnel Junctions

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The stabilization time is from the initial state to the steady state. The resistive-capacitive-inductive shunted junction (RCLSJ) model was used to study the nonlinear dynamical behavior of Josephson tunnel junction (JJ). The stabilization time of JJs is calculated by the information of voltage waveform. With the certain irradiation, four-dimensional image of stabilization time of JJs is calculated in the three-dimensional parameter space composed of the junction capacitance C, shunt inductance L, and the bias current I. The average of stabilization time under different conditions was applied to thr RCLSJ model and the superconducting quantum interference device (SQUID) model. In this paper, the average of stabilization time at different initial conditions, irradiation frequencies, and intensity was simulated. The average of stabilization time was nearly unvaried with initial value of normalized voltage and increased with the intensity of irradiation. The average of stabilization time fluctuates with the frequency of irradiation. Similar results are obtained in SQUID model. The average of stabilization time in SQUID model is less than that in JJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fujiwara, K., Qingguo, L., Van, D.T., Meng, X.: New delay-time measurements on a 64-kb Josephson–CMOS hybrid memory with a 600-ps access time. IEEE Trans. Appl. Supercond. 20, 14–20 (2010)

    Article  ADS  Google Scholar 

  2. Polonsky, S.V., Semenov, V.K., Bunyk, P.I., Kirichenko, A.F.: New RSFQ circuits (Josephson junction digital devices). IEEE Trans. Appl. Supercond. 3, 2566–2577 (2002)

    Article  Google Scholar 

  3. Fellmuth, B., Gaiser, Ch., Fischer, J.: Determination of the Boltzmann constant—status and prospects. Meas. Sci. Technol. 17, 145–159 (2006)

    Article  ADS  Google Scholar 

  4. Hamilton, C.A.: Josephson voltage standards. Rev. Sci. Instrum. 71, 3611–3623 (2000)

    Article  ADS  Google Scholar 

  5. Abdel Mageed, H.M., El-Rifaie, A.M., Aladdin, O.M.: Traceability of DC high voltage measurements using the Josephson voltage standard. Measurement 58, 269–273 (2014)

    Article  Google Scholar 

  6. Benseman, T.M., Gray, K.E., Koshelev, A.E., Kwok, W.K., Welp, U., Minami, H., Kadowaki, K., Yamamoto, T.: Powerful terahertz emission from Bi2Sr2CaCu2O8+δ mesa arrays. Appl. Phys. Lett. 103, 022602–1–022602-4 (2013)

    Article  Google Scholar 

  7. Benseman, T.M., Koshelev, A.E., Gray, K.E., Kwok, W.K., Welp, U., Kadowaki, K., Tachiki, M., Yamamoto, T.: Tunable terahertz emission from Bi2Sr2CaCu2O8+δ mesa devices, vol. 84, pp 064523–1–64523-1 (2011)

  8. Kadowaki, K., Yamaguchi, H., Kawamata, H., Yamamoto, T., Minami, H., Kakeya, I., Welp, U., Ozyuzer, L., Koshelev, A., Kurter, C., Gray, K.E., Kwok, W.K.: Characteristics of terahertz radiation emitted from the intrinsic Josephson junctions in high-Tc superconductor Bi2Sr2CaCu2O8+δ . Physica C: Superconductivity 468, 634–639 (2009)

    Article  ADS  Google Scholar 

  9. George, D.J.: Application and future potential of statolith increment analysis in squids and sepioids. Can. J. Fish. Aquat. 51, 2612–2625 (1994)

    Article  Google Scholar 

  10. Vincent, U.E., Ucar, A., Laoye, J.A., Kareem, S.O.: Control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design. Physica C 468, 374–382 (2008)

    Article  ADS  Google Scholar 

  11. Njah, A.N., Ojo, K.S., Adebayo, G.A., Obawole, A.O.: Generalized control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design. Physica C 470, 558–564 (2010)

    Article  ADS  Google Scholar 

  12. Khan, J.A., Almazyad, A.S., Shahabuddin, M.: Simulation study of noise effect on Shapiro steps in high-Tc Josephenson junctions using RCLSJ model. J. Supercond. Nov. Magn. 24, 1649–1651 (2011)

    Article  Google Scholar 

  13. Li, F., Liu, Q.R., Guo, H.Y., Zhao, Y.H., Tang, J., Ma, J.: Simulating the electric activity of FitzHugh–Nagumo neuron by using Josephson junction model. Nonlinear Dyn. 69, 2169–2179 (2012)

    Article  MathSciNet  Google Scholar 

  14. Bauch, T., LindstrÖm, T., Tafuri, F., Rotoli, G., Delsing, P., Claeson, T., Lombardi, F.: Quantum dynamics of a d-wave Josephson junction. Science 311, 57–60 (2006)

    Article  ADS  Google Scholar 

  15. Ncumann, E., Pikovsky, A.: Slow-fast dynamics in Josephson junction. Eur. Phys, J. 34, 293–303 (2003)

    Article  ADS  Google Scholar 

  16. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett 64, 1196–1199 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Braiman, Y., Goldhirsch, I.: Taming of chaotic dynamics by weak periodic perturbation. Phys. Rev. Lett. 66, 2545–2548 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Olsen, O.H., Samuelsen, M.R.: Control of chaos patterns in a Josephson junction model. Phys. Lett. A 266, 123–133 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Hsu, R., Su, H.T., Chern, J.L., Chen, C.C.: Conditions to control chaotic dynamics by weak periodic perturbation. Phys. Rev. Lett. 78, 2936–2939 (1997)

    Article  ADS  Google Scholar 

  20. Chacon, R., Palmero, F., B alibrea, F.: Taming chaos in driven Josephson junction. Int. J. Bifurcation Chaos Appl. Sci. Eng. 11, 1897–190 (2001)

    Article  Google Scholar 

  21. Stewart, W.C.: Current-voltage characteristics of Josephson junction. Appt. Phys. Lett. 12, 277–280 (1968)

    Article  ADS  Google Scholar 

  22. Mccumber, D.E.: Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions. J. Appl. Phys. 39, 3113–3118 (1968)

    Article  ADS  Google Scholar 

  23. Cawthorne, A.B., Whan, C.B., Lobb, C.J.: Complex dynamics of resistively and inductively shunted Josephson junction. J. Appl. Phys. 84, 1126–1132 (1998)

    Article  ADS  Google Scholar 

  24. Syamal, K.D., Dipendra, C.S., Kossi, D.E.: Chaotic dynamics in Josephson junction. IEEE Trans. Appl. Supercond. 48, 990–996 (2001)

    Google Scholar 

  25. Whan, C.B., Lobb, C.J., Forester, M.G.: Effect of inductance in externally shunted Josephson tunnel junction. J. Appl. Phys. Rev. 77, 382–389 (1995)

    Article  ADS  Google Scholar 

  26. Whan C.B., Lobb, C.J.: Complex dynamical behaviors in RCL-shunted Josephson tunnel junction. Phys. Rev. E 53, 405–413 (1996)

    Article  ADS  Google Scholar 

  27. Dana, S.K., Roy, P.K., Sethia, G.C., Sen, A., Sengupta, D.C.: Taming of chaos and synchronisation in RCL-shunted Josephson junctions by external forcing. IEE Proc.-Circuits Devices Syst. 153, 453–460 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grants 61101018, 51002081, 61171028, 61176119, and 61471208; by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant 20110031120033; and by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Ji, L., Xie, W. et al. Stabilization Time of Josephson Tunnel Junctions. J Supercond Nov Magn 28, 2017–2023 (2015). https://doi.org/10.1007/s10948-015-3026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3026-5

Keywords

Navigation