Skip to main content
Log in

Superconductivity in YBa2Cu3O7−d /La1−x Ca x MnO3 Bilayers (x = 0.3, 0.45, 0.55 and 0.8)

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Bilayers consisting of 4 unit cell (∼47 Å) YBa2Cu3O7−d (YBCO) with 200 Å La 1−x Ca x MnO3 (LCMO) on top were grown on SrTiO 3 substrates using pulsed laser deposition. The Ca concentration x of the LCMO layer was varied with x= 0.3, 0.45, 0.55 and 0.8. We observed that the superconducting transition temperature (T C ) is dependent on the Ca doping level and decreases as Ca concentration increases. Bilayers consisting of YBCO and antiferromagnetic insulating La 0.2Ca 0.8MnO 3 were not superconducting down to 4.2 K. A charge transfer mechanism cannot be responsible for this reduction of T C according to our analysis of the Fermi levels in YBCO and LCMO. It was revealed that T C is monotonically reduced as the in-plane lattice mismatch between YBCO and LCMO increases. Therefore we attribute the T C reduction in our bilayers to a structural origin, more specifically a large lattice mismatch enhances a creation of oxygen vacancies in YBCO and cation intermixing between YBCO and LCMO. A structural heterogeneity in YBCO/LCMO bilayers has an impact on its superconducting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bulaevskii, L.N., et al.: Coexistence of superconductivity and magnetism - theoretical predictions and experimental results. Adv. Phys. 34(2), 175–261 (1985)

    Article  ADS  Google Scholar 

  2. Eschrig, M.: Spin-polarized supercurrents for spintronics. Phys. Today 64(1), 43–49 (2011)

    Article  ADS  Google Scholar 

  3. Prinz, G.A.: Device physics - magnetoelectronics. Science 282(5394), 1660–1663 (1998)

    Article  Google Scholar 

  4. Stahn, J., et al.: Magnetic proximity effect in perovskite superconductor/ferromagnet multilayers. Phys. Rev. B 71(14), 140509–1–140509-4 (2005)

    Article  ADS  Google Scholar 

  5. Chakhalian, J., et al.: Magnetism at the interface between ferromagnetic and superconducting oxides. Nature Phys. 2(4), 244–248 (2006)

    Article  ADS  Google Scholar 

  6. Uribe-Laverde, M.A., et al.: Depth profile of the ferromagnetic order in a YBa 2Cu 3 O 7/La 2/3Ca 1/3MnO 3 superlattice on a LSAT substrate: a polarized neutron reflectometry study. Phys. Rev. B 87(11), 115105–1–115105-11 (2013)

    Article  ADS  Google Scholar 

  7. Pena, V., et al.: Giant magnetoresistance in ferromagnet/ superconductor superlattices. Phys. Rev. Lett. 94(5), 057002–1–057002-4 (2005)

    Article  ADS  Google Scholar 

  8. Cai, C.B., et al.: Proximity and reversal magnetoresistance behaviour in the oxide heterostructure of cuprate and manganite. Supercond. Sci. Technol. 23(3), 034010–1–034010-5 (2010)

    Article  Google Scholar 

  9. Pena, V., et al.: Coupling of superconductors through a half-metallic ferromagnet: Evidence for a long-range proximity effect. Physical Review B 69(22), 224502–1–224502-4 (2004)

    Article  ADS  Google Scholar 

  10. Pugach, N.G., Buzdin, A.I.: Magnetic moment manipulation by triplet Josephson current. Appl. Phys. Lett. 101(24), 242602–1–242602-4 (2012)

    Article  Google Scholar 

  11. Lin, J.G., et al.: Superconducting and transport properties of YBa 2Cu 3 O 7/La 0.7Sr 0.3MnO 3 bilayers. J. Appl. Phys. 98(2), 023910–1–023910-4 (2005)

    Article  Google Scholar 

  12. Yeh, N.C., et al.: Nonequilibrium superconductivity under spin-polarized quasiparticle currents in perovskite ferromagnet-insulator-superconductor heterostructures. Phys. Rev. B 60(14), 10522–10526 (1999)

    Article  ADS  Google Scholar 

  13. Sefrioui, Z., et al.: Ferromagnetic/superconducting proximity effect in La 0.7Ca 0.3MnO 3/YBa 2Cu 3 O 7−δ superlattices. Phys. Rev. B 67(21), 214511–1–214511-5 (2003)

    Article  ADS  Google Scholar 

  14. Soltan, S., et al.: The role of spin diffusion quasiparticle in CMR/HTSC heterostructures. Physica Status Solidi C. Magn. Superconducting Mater. Proc. 1(7), 1836–1839 (2004)

    Google Scholar 

  15. Soltan, S., Albrecht, J., Habermeier, H. U.: Spin-polarized quasiparticle injection effects in YBCO thin films. Solid State Commun. 135(7), 461–465 (2005)

    Article  ADS  Google Scholar 

  16. Chakhalian, J., et al.: Orbital reconstruction and covalent bonding at an oxide interface. Science 318(5853), 1114–1117 (2007)

    Article  ADS  Google Scholar 

  17. Werner, R., et al.: YBa 2Cu 3 O 7/La 0.7Ca 0.3MnO 3 bilayers: interface coupling and electric transport properties. Phys. Rev. B 82(22), 2245091–2245091-7 (2010)

    Article  Google Scholar 

  18. Hoffmann, A., et al.: Suppressed magnetization in La 0.7Ca 0.3MnO 3/YBa 2Cu 3 O 7−δ superlattices. Phys. Rev. B 72(14), 140407–1–140407-4 (2005)

    Article  ADS  Google Scholar 

  19. Jorgensen, J.D., et al.: Structural-properties of oxygen-deficient Yba 2Cu 3 O 7−δ . Phys. Rev. B 41(4), 1863–1877 (1990)

    Article  ADS  Google Scholar 

  20. Attfield, J.P.: A simple approach to lattice effects in conducting perovskite-type oxides. Chemistry of Materials 10(11), 3239–3248 (1998)

    Article  Google Scholar 

  21. Eisaki, H., et al.: Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors. Phys. Rev. B 69(6), 064512–1–064512-8 (2004)

    Article  ADS  Google Scholar 

  22. Manthiram, A., Goodenough, J.B.: Factors influencing Tc in 123 copper-oxide superconductors. Physica C 159(6), 760–768 (1989)

    Article  ADS  Google Scholar 

  23. Jones, R., et al.: Metal ion substitution chemistry in the YBaCuO system as a probe of the superexchange pathway. J. American Chem. Soc. 110(20), 6716–6720 (1988)

    Article  Google Scholar 

  24. Siwach, P.K., Singh, H.K., Srivastava, O.N.: Low field magnetotransport in manganites. J. Physics-Condensed Matt. 20(27), 273201–1–273201-43 (2008)

    Article  Google Scholar 

  25. Goodenough, J.B.: Theory of the role of covalence in the perovskite-type manganites [La,M(Ii)]MnO 3. Phys. Rev. 100(2), 564–573 (1955)

    Article  ADS  Google Scholar 

  26. Park, J.H., et al.: Electronic aspects of the ferromagnetic transition in manganese perovskites. Phys. Rev. Lett. 76(22), 4215–4218 (1996)

    Article  ADS  Google Scholar 

  27. Yunoki, S., et al.: Electron doping of cuprates via interfaces with manganites. Phys. Rev. B 76(6), 064532–1–064532-11 (2007)

    Article  ADS  Google Scholar 

  28. Shannon, R.D.: Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 32(SEP1), 751–767 (1976)

    Article  ADS  Google Scholar 

  29. Ziese, M., et al.: Thickness dependent magnetic and magnetotransport properties of strain-relaxed La 0.7Ca 0.3MnO 3 films. J. Appl. Phys. 91(12), 9930–9936 (2002)

    Article  ADS  Google Scholar 

  30. Bibes, M., et al.: Charge trapping in optimally doped epitaxial manganite thin films. Phys. Rev. B 66(13), 134416–1–134416-9 (2002)

    Article  ADS  Google Scholar 

  31. Khan, W.S., Hasanain, S.K.: Resistive and magnetic behavior and their correlation in polycrystalline manganite La 0.55Ca 0.45MnO 3. Physica Scripta 81(6), 065702–1–065702-7 (2010)

    Article  Google Scholar 

  32. Deac, I.G., Balasz, I.: Electroresistance, magnetocapacitance and magnetotransport properties of La 0.55Ca 0.45MnO 3/BaTiO 3 composite. Mater. Chem. Phys. 136(2-3), 850–857 (2012)

    Article  Google Scholar 

  33. Schiffer, P., et al.: Low-temperature magnetoresistance and the magnetic phase-diagram of La 1−xCa x MnO 3.. Phys. Rev. Lett. 75(18), 3336–3339 (1995)

    Article  ADS  Google Scholar 

  34. Aruta, C., et al.: Orbital occupation, atomic moments, and magnetic ordering at interfaces of manganite thin films. Phys. Rev. B 80(1), 014431–1–014431-8 (2009)

    Article  ADS  Google Scholar 

  35. Fang, Z., Solovyev, I.V., Terakura, K.: Phase diagram of tetragonal manganites. Phys. Rev. Lett. 84 (14), 3169–3172 (2000)

    Article  ADS  Google Scholar 

  36. de la Torre, M.A.L., et al.: Paramagnetic Meissner effect in YBa 2 Cu 3O7La 0.7Ca 0.3MnO 3 superlattices. Phys. Rev. B 73(5), 052503 (2006)

    Article  ADS  Google Scholar 

  37. Chen, C.Z., et al.: Paramagnetic effect tuned by magnetic pinning in YBa 2Cu 3O7−δ /La 0.67Sr 0.33MnO 3 heterostructures. Epl 89(3), 37005 (2010)

    Article  ADS  Google Scholar 

  38. Satapathy, D.K., et al.: Magnetic proximity effect in YBa 2Cu 3O7 La 2/3Ca 1/3MnO 3 and YBa 2Cu 3O7/LaMnO 3+ δ superlattices. Phys. Rev. Lett. 108(19), 197201 (2012)

    Article  ADS  Google Scholar 

  39. Didier, N., et al.: Twinning behaviour in YBCO and PBCO thin films and in PBCO-YBCO superlattices. J. Alloys and Compounds 251(1-2), 322–327 (1997)

    Article  Google Scholar 

  40. Elemans, J.B.A., et al.: Crystallographic and magnetic structures of La 1−x Ba x Mn 1−x Me x O3(Me = Mn or Ti). J. Solid State Chem. 3(2), 238–242 (1971)

    Article  ADS  Google Scholar 

  41. Shames, A.I., et al.: Resonance and magnetic study of polycrystalline La 0.9Ca 0.1MnO 3: Evidence of nonstoichiometry induced inhomogeneous, magnetic ground state. J. Applied Phys 101 (10), 103921–1–103921-6 (2007)

    Article  Google Scholar 

  42. Hibble, S.J., et al.: Local distortions in the colossal magnetoresistive manganates La 0.70Ca 0.30MnO 3, La 0.80Ca 0.20MnO 3 and La 0.70Sr 0.30MnO 3 revealed by total neutron diffraction. J. Physics-Condensed Matt. 11(47), 9221–9238 (1999)

    Article  ADS  Google Scholar 

  43. Debnath, J.C., et al.: Giant magnetic entropy change in colossal magnetoresistance in La 0.7Ca 0.3MnO 3 material in low field. J. Appl. Phys. 107(9), 09A916-1–09A916-3 (2010)

    Article  Google Scholar 

  44. Mori, M., et al.: Application of La 0.6 AE 0.4MnO 3(AE = Ca and Sr) to electric current collectors in high-temperature solid oxide fuel cells. Solid State Ionics 164(1-2), 1–15 (2003)

    Article  Google Scholar 

  45. Radaelli, P.G., et al.: Charge, orbital, and magnetic ordering in La 0.5Ca 0.5MnO 3. Phys. Rev. B 55(5), 3015–3023 (1997)

    Article  ADS  Google Scholar 

  46. Wakai, H., Munakata, F., Iguchi, E.: Enhancement of charge ordered antiferromagnetic phase due to Sr doping in La 0.45Ca 0.55−x Sr x MnO 3. Mater. Sci. Eng. B-Solid State Mater Adv. Technol. 103(1), 26–31 (2003)

    Article  Google Scholar 

  47. Rozenberg, E., et al.: Nanometer size effect on magnetic order in La 0.4Ca 0.6MnO 3: predominant influence of doped electron localization. Phys. Rev. B 78(5), 052405–1–052405-4 (2008)

    Article  ADS  Google Scholar 

  48. Sudyoadsuk, T., et al.: Suppression of charge-ordering and appearance of magnetoresistance in a spin-cluster glass manganite La 0.3Ca 0.7Mn 0.8Cr 0.2O3. J. Magnetism and Magnetic Mater. 278(1-2), 96–106 (2004)

    Article  ADS  Google Scholar 

  49. Markovich, V., et al.: Specific heat and magnetic order of La 0.2Ca 0.8MnO 3. J. Appl. Phys. 107(6), 063907–1–063907-5 (2010)

    Article  Google Scholar 

  50. Taguchi, H., et al.: Role of tetravalent ion in metal-insulator transition in (La 0.1Ca 0.9Mn 1−x Ti x )O3. J. Solid State Chem. 126(2), 235–241 (1996)

    Article  ADS  Google Scholar 

  51. Paszkowicz, W., et al.: Lattice parameters and orthorhombic distortion of CaMnO 3. Powder Diffract. 25(1), 46–59 (2010)

    Article  ADS  Google Scholar 

  52. Yamada, H., et al.: LaMnO 3/SrMnO 3 interfaces with coupled charge-spin-orbital modulation. Appl. Phys. Lett. 89(5), 052506–1–052506-3 (2006)

    Article  Google Scholar 

  53. Nanda, B.R.K., Satpathy, S.: Effects of strain on orbital ordering and magnetism at perovskite oxide interfaces: LaMnO 3/SrMnO 3. Phys. Rev, B 78(5), 054427–1–054427-12 (2008)

    Article  ADS  Google Scholar 

  54. Infante, I.C., et al.: Elastic and orbital effects on thickness-dependent properties of manganite thin films. Phys. Rev. B 76(22), 224415–1–224415-12 (2007)

    Article  ADS  Google Scholar 

  55. Chen, X.J., et al.: Metal-insulator transition above room temperature in maximum colossal magnetoresistance manganite thin films. Phys. Rev. B 72(10), 104403–1–104403-7 (2005)

    ADS  Google Scholar 

  56. Adamo, C., et al.: Effect of biaxial strain on the electrical and magnetic properties of (001) La 0.7Sr 0.3MnO 3 thin films. Appl. Phys. Lett. 95(11), 112504–1–112504-3 (2009)

    Article  Google Scholar 

  57. Habermeier, H.U., et al.: Tc reduction and related phases at early stages of YBa 2Cu 3 O 7-δ film growth on LaSrAlO 4. Physica C 282, 661–662 (1997)

    Article  ADS  Google Scholar 

  58. Malik, V.K., et al.: Pulsed laser deposition growth of heteroepitaxial YBa 2Cu 3O7/La 0.67Ca 0.33MnO 3 superlattices on NdGaO 3 and Sr 0.7La 0.3Al 0.65Ta 0.35O3 substrates. Phys. Rev. B 85(5), 054514–1–054514-13 (2012)

    Article  ADS  Google Scholar 

  59. Hikita, T., Ogasawara, M.: Hydrostatic-pressure effects on superconductive phase-transitions in Y 1−x Ca x Ba 2Cu 3 O 7−δ and Y(Ba 1−x La y ) 2Cu 3 O 7−δ . Japanese J. Appl. Phys Part 1-Regular Papers Short Notes & Rev. Papers 32(11A), 4950–4955 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Brian Smith for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kawashima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(EPS 45.9 KB)

(EPS 64.3 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawashima, K., Christiani, G., Logvenov, G. et al. Superconductivity in YBa2Cu3O7−d /La1−x Ca x MnO3 Bilayers (x = 0.3, 0.45, 0.55 and 0.8). J Supercond Nov Magn 28, 1993–2002 (2015). https://doi.org/10.1007/s10948-015-3014-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3014-9

Keywords

Navigation