Advertisement

Magnetic Properties of Dysprosium-Doped Cobalt Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-combustion Method

  • Raghvendra Singh Yadav
  • Jaromir Havlica
  • Ivo Kuřitka
  • Zuzana Kozakova
  • Martin Palou
  • Eva Bartoníčková
  • Martin Boháč
  • Františka Frajkorová
  • Jiri Masilko
  • Lukas Kalina
  • Miroslava Hajdúchová
  • Vojtěch Enev
  • Jaromir Wasserbauer
Original Paper

Abstract

Dysprosium-substituted cobalt ferrite nanoparticles with composition of CoFe2−x Dy x O4 (x = 0 − 0.1 in a step of 0.025) were synthesized by starch-assisted sol–gel auto-combustion method. The effect of Dy3+ cation substitution on structural and magnetic properties of cobalt ferrite nanoparticles was investigated. Powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy, infrared spectroscopy (IR), X-ray photoelectron spectroscopy and vibrating sample magnetometer (VSM) were employed to characterize the physical properties of these ferrite nanoparticles. XRD pattern reveals the formation of cubic spinel ferrite with the signature of DyFeO3 phases for x ≥ 0.05. An infrared spectroscopy study shows the presence of two absorption bands in the frequency range around 560 cm−1 (ν 1) and around 380 cm−1 (ν 2), which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. FE-SEM analysis indicated the formation of nanosized particles (5 −15 nm) with spherical morphology. Vibrating sample magnetometer was employed to probe the magnetic properties of the samples at room temperature. It was observed that rare earth ion dopant, crystallite size and foreign phase DyFeO3 affect the magnetic properties of cobalt ferrite nanoparticles.

Keywords

Nanoparticles Magnetic properties Spinel ferrites 

Notes

Acknowledgments

This work was supported by Project Excellent Teams - CZ.1.07/2.3.00/30.0005 and CZ.1.07/2.3.00/30.0039 at Materials Research Centre, Brno University of Technology and project Centre of Polymer Systems (reg. number CZ.1.05/2.1.00/03.0111) at Tomas Bata University in Zlin, Czech Republic.

References

  1. 1.
    Dong-Hyun, K., David, E.N., Duane, T.J., Christopher, S.B.: J. Magn. Magn. Mater. 320, 2390 (2008)CrossRefGoogle Scholar
  2. 2.
    Ngo, A.T., Pileni, M.P.: J. Phys. Chem. B 105, 53 (2001)CrossRefGoogle Scholar
  3. 3.
    Sousa, M.H., Tourinbo, F.A.: J. Phys. Chem. B 105, 168 (2001)Google Scholar
  4. 4.
    Han, D.H., Luo, H.L., Yang, Z.: J. Magn. Magn. Mater. 161, 376 (1996)CrossRefADSGoogle Scholar
  5. 5.
    Valenzuela, R.: Magnetic Ceramics. Cambridge University Press (1994)Google Scholar
  6. 6.
    Myrtil, L., Kahn, Z., Zhang, J.: Appl. Phys. Lett. 78, 3651–3654 (2001)CrossRefADSGoogle Scholar
  7. 7.
    Panda, R.N., Shih, J.C., Chin, T.S.: J. Magn. Magn. Mater. 257, 79–86 (2003)CrossRefADSGoogle Scholar
  8. 8.
    Muthuselvam, I.P., Bhowmik, R.N.: J. Magn. Magn. Mater. 322, 767–776 (2010)CrossRefADSGoogle Scholar
  9. 9.
    Tahar, L.B., Smiri, L.S., Artus, M., Joudrier, A.L., Herbst, F., Vaulay, M.J., Ammar, S., Fievet, F.: Mater. Res. Bull. 42, 1888–1896 (2007)CrossRefGoogle Scholar
  10. 10.
    Zhao, L., Cui, Y., Yang, H., Yu, L., Jin, W., Feng, S.: Mater. Lett. 60, 104–108 (2006)CrossRefGoogle Scholar
  11. 11.
    Kumar, L., Kar, M.: Cer. Int. 38, 4771–4782 (2012)CrossRefGoogle Scholar
  12. 12.
    Kim, C.S., Yi, Y.S., Park, K.-T., Namgung, H., Lee, J.-G.: J. Appl. Phys. 85, 5223–5225 (1999)CrossRefADSGoogle Scholar
  13. 13.
    Hutlova, A., Niznansky, D., Rehspringer, J.-L., Estourn es, C., Kurmoo, M.: Adv. Mater. 15, 1622–1625 (2003)CrossRefGoogle Scholar
  14. 14.
    Pillai, V., Shah, D.O.: J. Magn. Magn. Mater. 163, 243–248 (1996)CrossRefADSGoogle Scholar
  15. 15.
    Shafi, K.V.P.M., Gedanken, A., Prozorov, R., Balogh, J.: Chem. Mater. 10, 3445–3450 (1998)CrossRefGoogle Scholar
  16. 16.
    Kim, Y.I., Kim, D., Lee, C.S.: Phys. B 337, 42–51 (2003)CrossRefADSGoogle Scholar
  17. 17.
    Mumtaz, A., Maaz, K., Janjua, B., Hasanain, S.K., Bertino, M.F., Magn, J.: Magn. Mater. 313, 266–272 (2007)CrossRefADSGoogle Scholar
  18. 18.
    Seip, C.T., Carpenter, E.E., O’Connor, C.J., John, V.T., Li, S.: IEEE Trans. Magn. 34, 1111–1113 (1998)CrossRefADSGoogle Scholar
  19. 19.
    Cote, L.J., Teja, A.S., Wilkinson, A.P., Zhang, Z.J.: Fluid Phase Equilibr. 210, 307–317 (2003)CrossRefGoogle Scholar
  20. 20.
    Mallikarjuna, N.N., Lagashetty, A., Venkataraman, A.: J. Therm. Anal. Calorim. 74, 819–826 (2003)CrossRefGoogle Scholar
  21. 21.
    Karimi, Z., Mohammadifar, Y., Shokrollahi, H., Khameneh Asl, Sh., Yousefi, Gh., Karimi, L.: J. Magn. Magn. Mater. 361, 150–156 (2014)CrossRefADSGoogle Scholar
  22. 22.
    Kambale, R.C., Song, K.M., Won, C.J., Lee, K.D., Hur, N.: J. Cryst. Growth 340, 171–174 (2012)CrossRefADSGoogle Scholar
  23. 23.
    Kambale, R.C., Song, K.M., Koo, Y.S., Hur, N.: J. Appl. Phys. 110, 053910 (2011)CrossRefADSGoogle Scholar
  24. 24.
    Patil, S.A., Otari, S.M., Mahajan, V.C., Patil, M.G., Patil, A.B., Soudagar, M.K., Patil, B.L., Sawant, S.R.: Solid State Comm. 78, 39 (1991)CrossRefADSGoogle Scholar
  25. 25.
    Sileo, E.E., Rotelo, R., Jacobo, S.E.: Phys. B 320, 257 (2002)CrossRefADSGoogle Scholar
  26. 26.
    Jacobo, S.E., Fano, W.G., Razzitte, A.C.: Phys. B 320, 261 (2002)CrossRefADSGoogle Scholar
  27. 27.
    Sileo, E.E., Jacobo, S.E.: Phys. B 354, 241 (2004)CrossRefADSGoogle Scholar
  28. 28.
    Ramalho, M.A.F., Gama, L., Antonio, S.G., Paiva-Santos, C.O., Miola, E.J., Kiminami, R.H.G.A., Costa, A.C.F.M.: J. Mater. Sci. 42, 3603 (2007)CrossRefADSGoogle Scholar
  29. 29.
    Duong, G.V., Turtelli, R.S., Hanh, N., Linh, D.V., Reissner, M., Michor, H., Fidler, J., Wiesinger, G., Grossinger, R.: J. Magn. Magn. Mater. 307, 313–317 (2006)CrossRefADSGoogle Scholar
  30. 30.
    Wang, Z., Lazor, P., Saxena, S.K., O’Neill, H.S.C.: Mater. Res. Bull. 37(9), 1589–1602 (2002)CrossRefGoogle Scholar
  31. 31.
    Chandramohan, P., Srinivasan, M.P., Velmurugan, S., Narasimhan, S.V.: J. Solid State Chem. 184, 89–96 (2011)CrossRefADSGoogle Scholar
  32. 32.
    Cvejic, Z., Rakic, S., Kremenovic, A., Antic, B., Jovalekic, C., Colomban, P.: Solid State Sci. 8, 908 (2006)CrossRefADSGoogle Scholar
  33. 33.
    Urcia-Romero, S., Perales-Pérez, O., Gutiérrez, G.: J. Appl. Phys. 107, 09A508 (2010)CrossRefGoogle Scholar
  34. 34.
    Shemer, G., Tirosh, E., Livneh, T., Markovich, G.: J. Phys. Chem. C 111, 14334–14338 (2007)CrossRefGoogle Scholar
  35. 35.
    Liu, W., Chan, Y., Cai, J., Leung, C., Mak, C., Wong, K., Zhang, F., Wu, X., Qi, X.D.: J. Appl. Phys. 112, 104306 (2012)CrossRefADSGoogle Scholar
  36. 36.
    Zhao, X., Wang, W., Zhang, Y., Wu, S., Li, F., Liu, J.P.: Chem. Eng. J. 250, 164–174 (2014)CrossRefGoogle Scholar
  37. 37.
    Waldron, R.D.: Infrared Spectra of Ferrites. Phys. Rev. 99, 1727 (1955)CrossRefADSGoogle Scholar
  38. 38.
    Labde, B.K., Sable, M.C., Shamkuwar, N.R.: Mater. Lett. 57, 1651–1655 (2003)CrossRefGoogle Scholar
  39. 39.
    Gabal, M.A., AlAngari, Y.M., Zaki, H.M., Magn, J.: Magn. Mater. 363, 6–12 (2014)CrossRefADSGoogle Scholar
  40. 40.
    Raut, A.V., Barkule, R.S., Shengule, D.R., Jadhav, K.M., Magn, J.: Magn. Mater. 358-359, 87–92 (2014)CrossRefADSGoogle Scholar
  41. 41.
    Cheng, F.X., Jia, J.T., Xu, Z.G., Zhou, B., Liao, C.S., Yan, C.H., Chen, L.Y., Zhao, H.B.: J. Appl. Phys. 86, 2727 (1999)CrossRefADSGoogle Scholar
  42. 42.
    Cheng, F.X., Liao, C., Kuang, J., Xu, Z., Yan, C., Chen, L., Zhao, H., Liu, Z.: J. Appl. Phys. 85, 2782 (1999)CrossRefADSGoogle Scholar
  43. 43.
    Zaki, H.M., Dawoud, H.A.: Phys. B 405, 4476 (2010)CrossRefADSGoogle Scholar
  44. 44.
    Shirsath, S.E., Kadam, R.H., Mane, M.L., Ghasemi, A., Yasukawa, Y., Liu, X., Morisako, A.: J. Alloys Compnd. 575, 145–151 (2013)CrossRefGoogle Scholar
  45. 45.
    Srinivasan, T.T., Srivastava, C.M., Venkatramni, N., Patani, M.J.: Bull. Mater. Sci. 5, 1063 (1984)CrossRefGoogle Scholar
  46. 46.
    Jaffari, G.H., Lin, H.Y., Ni, C., Shah, S.I.: Mater. Sci. Eng. B 164, 23–29 (2009)CrossRefGoogle Scholar
  47. 47.
    Tholkappiyan, R., Vishista, K.: Physica B (2014). doi: 10.1016/j.physb.2014.04.022 Google Scholar
  48. 48.
    Wang, W.P., Yang, H., Xian, T., Jiang, J.L.: Mater. Trans. 53(9), 1586–1589 (2012)CrossRefGoogle Scholar
  49. 49.
    Sodaee, T., Ghasemi, A., Paimozd, E., Paesano, A. Jr., Morisako, A.: J Magn. Magn. Mater. 330, 169–173 (2013)CrossRefADSGoogle Scholar
  50. 50.
    Neel, L.: Ann. Phys. Paris 3, 137–198 (1948)Google Scholar
  51. 51.
    Pachpinde, A.M., Langade, M.M., Lohar, K.S., Patange, S.M., Shi, S.E.: Chem. Phys. 429, 20–26 (2014)CrossRefADSGoogle Scholar
  52. 52.
    Kambale, R.C., Shaikh, P.A., Kamble, S.S., Kolekar, Y.D.: J. Alloys Comp. 478, 599 (2009)CrossRefGoogle Scholar
  53. 53.
    Karimi, Z., Mohammadifar, Y., Shokrollahi, H., Khameneh Asl, S., Yousefi, Gh., Karimi, L.: J. Magn. Magn. Mater. 361, 150–156 (2014)CrossRefADSGoogle Scholar
  54. 54.
    Kambale, R., Song, K., Won, C., Lee, K., Hur, N.: J. Cryst. Growth 340, 171–174 (2011)CrossRefADSGoogle Scholar
  55. 55.
    Ali, I., Islam, M., Ishaque, M.: J. Magn. Magn. Mater 324, 3777 (2012)CrossRefADSGoogle Scholar
  56. 56.
    Pachpinde, A.M., Langade, M.M., Lohar, K.S., Patange, S.M., Shirsath, S.E.: Chem. Phys. 429, 20–26 (2014)CrossRefADSGoogle Scholar
  57. 57.
    Peng, Z., Fu, X., Ge, H., Fu, Z., Wang, C., Qi, L., Miao, H.: J. Magn. Magn. Mater. 323, 2513 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Raghvendra Singh Yadav
    • 1
  • Jaromir Havlica
    • 1
  • Ivo Kuřitka
    • 2
  • Zuzana Kozakova
    • 2
  • Martin Palou
    • 1
  • Eva Bartoníčková
    • 1
  • Martin Boháč
    • 1
  • Františka Frajkorová
    • 1
  • Jiri Masilko
    • 1
  • Lukas Kalina
    • 1
  • Miroslava Hajdúchová
    • 1
  • Vojtěch Enev
    • 1
  • Jaromir Wasserbauer
    • 1
  1. 1.Materials Research CentreBrno University of TechnologyBrnoCzech Republic
  2. 2.Centre of Polymer Systems, University InstituteTomas Bata University in ZlinZlínCzech Republic

Personalised recommendations