Skip to main content
Log in

Mean Field Study of a New Nanotube Structure from a Double Hexagonal Symmetry

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Borrowing ideas from Lie algebras, we propose a new nanotube model based on a double hexagonal geometry appearing in the G 2 Lie symmetry. This structure involves two hexagons of unequal side length at angle 30 producing \((\sqrt {3}~\times ~\sqrt {3})R30~^{\circ }\) and (1 × 1) geometries. In this configuration system, the principal unit cell contains 12 sites instead of only 6 ones, arising in the single hexagonal structure on which the graphene-like models are based. More precisely, we engineer a superlattice model based on periodic bilayers consisting of particles with the spins \(\sigma =\pm \frac {1}{2}\) having two possible states, placed at sites of the double hexagonal structure. Then, we investigate the phase diagrams and the magnetic properties using the mean field method. In particular, we find six stable phases required by a global Z 2 symmetry associated with the spin values placed at the site of the G 2 double hexagonal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gatteschi, D., Kahn, O., Miller, J.S., Palacio, F.: (Editors), Magnetic molecular materials, NATO ASI E 198 Plenum (1991)

  2. Weiss, P.: J. Phys. Radium: 6, 661 (1907)

    MATH  Google Scholar 

  3. Stanley, H.E.: Introduction to phase transitions and critical phenomena. Oxford University Press (1971)

  4. Yeomans, M.: Statistical mechanics of phase transitions. Oxford (1993)

  5. El Rhazouani, O., et al.: Physica. A 397, 31 (2014)

    Article  ADS  Google Scholar 

  6. Naji, S., et al.: Physica. A 391, 3885 (2012)

    Article  ADS  Google Scholar 

  7. El Yadari, M., Bahmad, L., El Kenz, A., Benyoussef, A.: Physica. A 392(4), 673–679 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  8. Naji, S., Belhaj, A., Labrim, H., Bahmad, L., Benyoussef, A., El Kenz, A.: Physica A 399, 106–112 (2014)

    Article  ADS  Google Scholar 

  9. Naji, S., Belhaj, A., Labrim, H., Bahmad, L., Benyoussef, A., El Kenz, A.: Acta Physica. Pol. Ser. B. 45, 947–957 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  10. Kaneyoshi, T.: J. Magn. Magn. Mater. 339, 151–156 (2013)

    Article  ADS  Google Scholar 

  11. Masrour, R., Bahmad, L., Hamedoun, M., Benyoussef, A., Hlil, E.K.: Solid State Commun. 162, 53–56 (2013)

    Article  ADS  Google Scholar 

  12. Chen, L., Liu, C.C., Feng, B., He, X., Cheng, P., Ding, Z., Meng, S., Yao, Y., Wu, K.: Phys. Rev. Lett. 109, 056804 (2012)

    Article  ADS  Google Scholar 

  13. Naji, S., Belhaj, A., Labrim, H., Bhihi, M., Benyoussef, A., El Kenz, A.: Int. J. Mod. Phys. B (2) (2014). doi:10.1142/S0217979214500866

    Google Scholar 

  14. Naji, S., Belhaj, A., Labrim, H., Bhihi, M., Benyoussef, A., El Kenz, A.: Int. J. Quant. Chem 114(7), 463 (2014)

    Article  Google Scholar 

  15. Naji, S., Belhaj, A., Labrim, H., Benyoussef, A., El Kenz, A.: Eur. Phys. J. B 85, 9373 (2012)

    Article  Google Scholar 

  16. Naji, S., Belhaj, A., Labrim, H., Bhihi, M., Benyoussef, A., El Kenz, A.: J. Phys. Chem. C 118(9), 4924–4929 (2014)

    Article  Google Scholar 

  17. Naji, S., Belhaj, A., Labrim, H., Benyoussef, A., El Kenz, A.: Mod. Phys. Lett. B 27, 1350212 (2013)

    Article  ADS  Google Scholar 

  18. Humphreys, J.E.: Introduction to Lie algebras and representation theory. Sauteur-Verlag, New York (1978)

    MATH  Google Scholar 

  19. Belhaj, A.: Physique, Symétrie en Algèbres de Lie Théorie des groupes et Représentations. arXiv:1205.3335

  20. Belhaj, A.: Manifolds of G2 holonomy from N=4 Sigma Model. J. Phys. A35, 8903 (2002)

    MathSciNet  ADS  Google Scholar 

  21. Belhaj, A., Garcia del Moral, M.P., Restuccia, A., Segui, A., Veiro, J.P.: The supermembrane with central charges on a G2 manifold. J. Phys. A 425, 325201 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. Belhaj, A., Boya, L.J., Segui, A.: On hexagonal structures in higher dimensional theories. J. Theor. Phys. 52, 130 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Honmura, R., Kaneyoshi, T.: Contribution to the new type of effective-field theory of the Ising model. J. Phys. C: Solid State Phys. 12, 3979 (1979)

    Article  ADS  Google Scholar 

  24. Boccara, N.: Dilute Ising models: A simple theory. Phys. Lett. A 94, 185 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  25. Benyoussef, A., Boccara, N.: J. Appl. Phys 55, 1667 (1985)

    Article  ADS  Google Scholar 

  26. Wilson, K.G.: Phys. Rev B4, 3184 (1971)

    Article  ADS  Google Scholar 

  27. Oitmaa, J.: High temperature series expansions for Griffiths’ model of 3He-4He mixtures, Phys. Lett. A 33, 230 (1970)

    Article  ADS  Google Scholar 

  28. Ising, E.Z.: Phys. 31, 253 (1925)

    Article  Google Scholar 

  29. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 117, 65 (1944)

    MathSciNet  Google Scholar 

  30. Syozi, I.: Progr. Theor. Phys. 6, 341 (1951)

    Article  MathSciNet  Google Scholar 

  31. Syozi, I., Domb, C., Green, M.S. (eds.): Phase transition and critical phenomena, vol. 1. Academic Press, New York, 269 (1972)

    Google Scholar 

  32. Fisher, M.E.: Transformations of Ising models. Phys. Rev. 113, 969 (1959)

    Article  ADS  Google Scholar 

  33. Dakhama, A.: Exact solution of a decorated ferrimagnetic Ising model. Physica. (A) 252, 225 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  34. Jascur, M.: Physica. (A) 252, 207 (1998)

    MathSciNet  ADS  Google Scholar 

  35. Strecka, J., Jascur, M., Magn, J.: Magn. Mater. 260, 415 (2003)

    Article  ADS  Google Scholar 

  36. Benyoussef, A., El Kenz, A., El Yadari, M.: Physica. B 393 (2007)

  37. Benyoussef, A., El Kenz, A., El Yadari, M., Loulidi, M.: Int. J. Mod. Phys. B 23, 4963 (2009)

    Article  MATH  ADS  Google Scholar 

  38. Bahmad, L., Benyoussef, A., El Kenz, A.: Phys. Rev B 76, 094412 (2007)

    Article  ADS  Google Scholar 

  39. Bahmad, L., Benyoussef, A., El Kenz, A.: Physica. A 387(4), 825 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  40. El Hallani, F., Ez-Zahraouy, H., Benyoussef, A.: J. Supercond. Nov. Magn. 24, 8 (2011)

    Google Scholar 

  41. Bogoliubov, N.N.: J. Phys. (USSR) 11, 23 (1947)

    Google Scholar 

  42. Feynmann, R.P.: Phys. Rev. 97, 660 (1955)

    Article  ADS  Google Scholar 

  43. Naji, S., Benyoussef, A., El Kenz, A., Ez.Zahraouy, H., Loulidi, M.: Physica. A 391, 3885 (2012)

    Article  ADS  Google Scholar 

  44. Masrour, R., Bahmad, L., Benyoussef, A.: Chin. Phys. B. 22(5), 057504 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naji, S., Ziti, S., Belhaj, A. et al. Mean Field Study of a New Nanotube Structure from a Double Hexagonal Symmetry. J Supercond Nov Magn 28, 2183–2191 (2015). https://doi.org/10.1007/s10948-015-2992-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-2992-y

Keywords

Navigation