Advertisement

Effect of Post-Heat Treatment on the Critical Current Density of Nb3Al Superconductor

  • Ping-yuan LiEmail author
  • Xiao-lan Zhang
  • Da-wei Yang
  • Su-hua Yang
  • Xi-feng Pan
  • Guo Yan
  • Yong Zhang
  • Yong Feng
  • Yong Zhao
Original Paper

Abstract

The achievement of stoichiometry is very important for Nb3Al superconductor with excellent properties. A rapid heating, quenching, and transformation method is efficient to achieve stoichiometric Nb3Al superconducting wires, and supersaturated solid solution phase was transformed to Nb3Al in the transformation process with a post-annealing temperature between 800° to 900 °C and for 10 h. X-ray diffraction analysis revealed that the Nb3Al wires were of pure Nb3Al phase with a superconducting transition temperature about 18 K. Experimental results further showed that superconducting transition width was narrowed by quenching process after post-annealing. For the typical samples, the H c2(T) was determined from the onset transitions of the MTcurves under various applied fields and the H c2(0) value was extrapolated to be about 35 T. A significantly high J c value under a magnetic field up to 9 T and at 8 K was observed. The pinning behavior of the Nb3Al wires was also discussed.

Keywords

Nb3Al Post-heat treatment Critical current densities 

Notes

Acknowledgments

This work was supported by National Magnetic Confinement Fusion Science Program (Grant No. 2011GB112001), Program of International S&T Cooperation (Grant No. 2013DFA51050), and the National Natural Science Foundation of China (Grant No. 51271155, 51377138).

References

  1. 1.
    Ceresara, S., Ricci, M.V., Sacchetti, N., Sacerdoti, G.: IEEE Trans. Magn. 11, 263 (1975)CrossRefADSGoogle Scholar
  2. 2.
    Akihama, R., Murphy, R.J., Foner, S.: Appl. Phys. Lett. 37, 1107 (1980)CrossRefADSGoogle Scholar
  3. 3.
    Takeuchi, T.: Supercond. Sci. Technol. 13, R101 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Kumakura, H., Togano, K., Tachikawa, K., Tsukamoto, S., Irie, H.: Appl. Phys. Lett. 49, 46 (1986)CrossRefADSGoogle Scholar
  5. 5.
    Kumakura, H., Togano, K., Tachikawa, K., Yamada, Y., Murase, S., Nakamura, E., Sasaki, M.: Appl. Phys. Lett. 48, 601 (1986)CrossRefADSGoogle Scholar
  6. 6.
    Schaper, W., Kehlenbeck, M., Zimmermann, I., Freyhardt, H.C.: IEEE Trans. Magn. 25, 1988 (1989)CrossRefADSGoogle Scholar
  7. 7.
    Kosuge, M., Iijima, Y., Takeuchi, T., Inoue, K., Kiyoshi, T., Irie, H.: IEEE Trans. Appl. Supercond. 3, 1010 (1993)CrossRefGoogle Scholar
  8. 8.
    Webb, G.W.: Appl. Phys. Lett. 32, 773 (1978)CrossRefADSGoogle Scholar
  9. 9.
    Togano, K., Takeuchi, T., Tachikawa, K.: Appl. Phys. Lett. 41, 199 (1982)CrossRefADSGoogle Scholar
  10. 10.
    Thieme, C.L.H., Pourrahimi, S., Foner, S.: IEEE Trans. Magn. 25, 1992 (1989)CrossRefADSGoogle Scholar
  11. 11.
    Takeuchi, T., Banno, N., Fukuzaki, T., Wada, H.: Supercond. Sci. Technol. 13, L11 (2000)CrossRefADSGoogle Scholar
  12. 12.
    Bruzzese, R., Ricci, M., Spadoni, M., Sacchetti, N., Ceresara, S.: Curr. Topics Magn. Res. 1, 191 (1994)Google Scholar
  13. 13.
    Yamada, Y., Ayai, N., Takahashi, K., Sato, K., Sugimoto, M., Ando, T., Takahashi, Y., Nishi, M.: Adv. Cryog. Eng. 40, 907 (1994)Google Scholar
  14. 14.
    Kosuge, M., Takeuchi, T., Tagawa, K., Banno, N., Yuyama, M., Wada, H., Nakagawa, K., Yamanaka, T., Moriai, H.: IEEE Trans. Appl. Supercond. 10, 1034 (2000)CrossRefGoogle Scholar
  15. 15.
    Takeuch, T., Kikuchi, A.: Cryogenics 48, 371 (2008)CrossRefADSGoogle Scholar
  16. 16.
    Bean, C.P.: Phys. Rev. Lett. 8, 250 (1962)CrossRefADSzbMATHGoogle Scholar
  17. 17.
    Werthamer, N.R., etal: Phys. Rev. 147, 295 (1966)CrossRefADSGoogle Scholar
  18. 18.
    Kramer, E.J.: J. Appl. Phys. 44, 1360 (1973)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ping-yuan Li
    • 1
    Email author
  • Xiao-lan Zhang
    • 1
  • Da-wei Yang
    • 1
  • Su-hua Yang
    • 1
  • Xi-feng Pan
    • 2
  • Guo Yan
    • 2
  • Yong Zhang
    • 1
  • Yong Feng
    • 2
  • Yong Zhao
    • 1
    • 3
  1. 1.Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy R&D CenterSouthwest Jiaotong UniversityChengduChina
  2. 2.National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd.Xi’anChina
  3. 3.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations