Magnetically Modulated Microwave Absorption Behavior in the Bi–Pb–Sr–Ca–Cu–O/CdS Composite

  • G. AlvarezEmail author
  • E. Díaz-Valdés
  • J. Aguilar-Hernández
  • F. de Moure-Flores
  • R. Zamorano
  • G. S. Contreras-Puente
Original Paper


The effect of depositing CdS nanoparticles on the surface of a high-temperature superconductor Bi–Pb–Sr–Ca–Cu–O is investigated by means of magnetically modulated microwave absorption spectroscopy (MAMMAS), for the 77–300 K temperature range. The experimental results indicate that the onset of superconducting transition in Bi–Pb–Sr–Ca–Cu–O/CdS composite is shifted to high temperature, with regard to the single superconductor sample; and it is associated to the presence of new superconducting phase in the interface between the superconductor micrograins and the CdS nanoparticles. Additionally, the low-field microwave absorption (LFMA) at liquid nitrogen temperature is used to confirm the superconductor state of these materials.


Magnetically modulated microwave absorption High-temperature superconductor CdS nanoparticles Spray pyrolysis deposition Composite material 



G. Alvarez acknowledges research support in the laboratory of magnetic mensurations and biophysics of ESFM-IPN-Mexico. We also acknowledge the partial financial support of CONACYT-SENER with grant CEMIE-SOL project 37.


  1. 1.
    Bhat, S.V., Ganguly, P., Ramakrishnan, T.V., Rao, C.N.R.: J. Phys. C: Solid State Phys. 20, L559 (1987)CrossRefADSGoogle Scholar
  2. 2.
    Blazey, K.W., Müller, K.A., Bednorz, J.G., Berlinger, W., Amoretti, G., Buluggiu, E., Vera, A., Matacotta, F.C.: Phys. Rev. B 36, 7241 (1987)CrossRefADSGoogle Scholar
  3. 3.
    Khachaturyan, K., Weber, E.R., Tejedor, P., Stacy, A.M., Portis, A.M.: Phys. Rev. B 36, 8309 (1987)CrossRefADSGoogle Scholar
  4. 4.
    Moorjani, K., Bohandy, J., Adrian, F.J., Kim, B.F.: Phys. Rev. B 36, 4036 (1987)CrossRefADSGoogle Scholar
  5. 5.
    Bohandy, J., Suter, J., Kim, B.F., Moorjani, K., Adrian, F.J.: Appl. Phys. Lett. 51, 2161 (1987)CrossRefADSGoogle Scholar
  6. 6.
    Kim, B.F., Moorjani, K., Adrian, F.J., Bohandy, J.: Mater. Sci. Forum 137-139, 133 (1993)CrossRefGoogle Scholar
  7. 7.
    Topacli, C.: J. Supercond. 9, 263 (1996)CrossRefADSGoogle Scholar
  8. 8.
    Topacli, C.: Phys. C 301, 92 (1998)CrossRefADSGoogle Scholar
  9. 9.
    Velter-Stefanescu, M., Totovana, A.: V. Sandu. J. Supercond. 11, 327 (1998)CrossRefADSGoogle Scholar
  10. 10.
    Velter-Stefanescu, M., Duliu, O.G., Mihalache, V.: J. Optoelectron. Adv. M. 7, 1557 (2005)Google Scholar
  11. 11.
    Padam, G.K., Ekbote, S.N., Tripathy, M.R., Srivastava, G.P.: B.K. Das. Physica C 315, 45 (1999)CrossRefADSGoogle Scholar
  12. 12.
    Padam, G.K., Arora, N.K., Ekbote, S.N.: Mater. Chem. Phys. 123, 752 (2010)CrossRefGoogle Scholar
  13. 13.
    Shaltiel, D., Bezalel, M., Revaz, B., Walker, E., Tamegai, T., Ooi, S.: Phys. C 349, 139 (2001)CrossRefADSGoogle Scholar
  14. 14.
    Alvarez, G., Zamorano, R.: J. Alloys Compd. 369, 231 (2004)CrossRefGoogle Scholar
  15. 15.
    Zakhidov, A.A., Ugawa, A., Imaeda, K., Yakushi, K., Inokuchi, H.: Solid State Commun. 79, 939 (1991)CrossRefADSGoogle Scholar
  16. 16.
    Bele, P., Brunner, H., Schweitzer, D., Keller, H.J.: Solid State Commun. 92, 189 (1994)CrossRefADSGoogle Scholar
  17. 17.
    Hirotake, K., Hisashi, A., Zakhidov, A.A., Kazuya, T., Kyuya, Y., Katsumi, Y.: Phys. C 277, 277 (1997)CrossRefGoogle Scholar
  18. 18.
    Niebling, U., Steinl, J., Schweitzer, D., Strunz, W.: Solid State Commun. 106, 505 (1998)CrossRefADSGoogle Scholar
  19. 19.
    Stankowski, J., Piekara-Sady, L., Kempinski, W.: J. Phys. Chem. Solids 65, 321 (2004)CrossRefADSGoogle Scholar
  20. 20.
    Kheifets, A.S., Veinger, A.I.: Phys. C 165, 491 (1990)CrossRefADSGoogle Scholar
  21. 21.
    Bhide, M.K., Kadam, R.M., Sastry, M.D., Ajay, S., Shashwati, S., Aswal, D.K., Gupta, S.K., Sahni, V.C.: Supercond. Sci. Technol. 14, 572 (2001)CrossRefADSGoogle Scholar
  22. 22.
    Owens, F.J.: Phys. C 363, 202 (2001)CrossRefADSGoogle Scholar
  23. 23.
    Andrzejewski, B., Kowalczyk, A., Stankowski, J., Szlaferek, A.: J. Phys. Chem. Solids 65, 623 (2004)CrossRefADSGoogle Scholar
  24. 24.
    Panarina, N.Y., Talanov, Y.I., Shaposhnikova, T.S., Beysengulov, N.R., Vavilona, E., Behr, G., Kondrat, A., Hess, C., Leps, N., Wurmehl, S., Klinger, R., Kataev, V., Büchner, B.: Phys. Rev. B 81, 224509 (2010)CrossRefADSGoogle Scholar
  25. 25.
    Pacher, N., Deisenhofer, J., Krung von Nidda, H.-A., Hemmida, M., Jeevan, H.S., Gegenwart, P., Loidl, A.: Phys. Rev. B 82, 054525 (2010)CrossRefADSGoogle Scholar
  26. 26.
    Alvarez, G.: In: J. I. Levine (ed.): Magnetic Materials: Research, Technology and Applications. Nova Science Publishers, New York (2009)Google Scholar
  27. 27.
    Montiel, H., Alvarez, G.: Detection of magnetic transitions by means of ferromagnetic resonance and microwave absorption techniques. In: O. Yalçin (ed.) Ferromagnetic Resonance-Theory and Applications, Intech, Rijeka, Croatia (2013)Google Scholar
  28. 28.
    Alvarez, G., Montiel, H., Conde-Gallardo, A., Zamorano, R.: J. Supercond. Novel Magn. 27, 1329 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • G. Alvarez
    • 1
    Email author
  • E. Díaz-Valdés
    • 1
  • J. Aguilar-Hernández
    • 1
  • F. de Moure-Flores
    • 2
  • R. Zamorano
    • 1
  • G. S. Contreras-Puente
    • 1
  1. 1.Escuela Superior de Física y Matemáticas del Instituto Politécnico NacionalMéxicoMéxico
  2. 2.Facultad de Química-MaterialesUniversidad Autónoma de QuerétaroQuerétaroMéxico

Personalised recommendations