Structural, Transport, and Magnetic Properties of Bismuth Oxysulfide Superconductors

  • M Padmavathi
  • R SinghEmail author
Original Paper


Superconducting bismuth oxy sulfide samples were synthesized with 5 and 10 % of excess Bi2O3 over and above the required quantity as per stoichiometry composition of Bi4O4S3 phase. The excess Bi2O3 acts as flux for the Bi4O4S3 phase formation and increases the superconducting volume fraction, grain size, and critical current density (J c) compared to the stoichiometric sample. The transmission electron microscopy (TEM) studies show the samples to be multiphase materials. The superconducting zero resistivity temperature (T zero) is not affected by the excess Bi2O3. However, the sample with 5 % excess Bi2O3 has the highest superconducting onset temperature (T onset), grain size, and J c value of 4.7 × 103 A/cm2 among all the samples studied. The J c values are low due to weak links of superconducting grains in these materials. J c varies with applied external magnetic field as per the collective pinning model. The pinning force follows scaling law of combination of surface and point pinning. The dominating pinning mechanism changes from surface pinning to point pinning as the Bi2O3 content increases.


Bismuth oxysulfide Superconductivity Critical current density Pinning mechanism 



One of the authors MP is very much thankful to University Grants Commission (UGC) India for providing basic science research (BSR) fellowship.


  1. 1.
    Mizuguchi, Y., Fujihisa, H., Gotoh, Y., Suzuki, K., Usui, H., Kuroki, K. , Demura, S., Takano, Y., Izawa, H., Miura, O.: Phys. Rev. B 86, 0220510(R) (2012)CrossRefADSGoogle Scholar
  2. 2.
    Singh, S.K., Kumar, A., Gahtori, B., Shruti, Sharma, G., Patnayak, S., Awana, V.P.S.: J. Am. Chem. Soc. 134, 16504 (2012)CrossRefGoogle Scholar
  3. 3.
    Takatsu, H., Mizuguchi, Y., Izawa, H., Miura, O., Kadowaki, H.: J. Phys. Soc. Jpn. 81, 125002 (2012)CrossRefADSGoogle Scholar
  4. 4.
    Li, S., Yang, H., Tao, J., Ding, X., Wen, H.-H.: arXiv:1207.4955v1 (2012)
  5. 5.
    Srivastsava, S.P., Patnaik, S.: J. Phys. Condens. Matter 25, 312202 (2013)CrossRefADSGoogle Scholar
  6. 6.
    Biswas, P.K., Amato, A., Baines, C., Khasanov, R., Luetkens, H., Lei, H., Petrovic, C., Morenzoni, E.: Phys. Rev. B 88, 224515 (2013)CrossRefADSGoogle Scholar
  7. 7.
    Sheng, L., Huan, Y., DeLong, F., ZhenYu, W., TaoJian, XiaXin, D., HaiHu, W.: Sci. China-Phy. Mech. Astron. 56, 2019– 2025 (2013)CrossRefGoogle Scholar
  8. 8.
    Kotegawa, H., Tomita, Y., Tou, H., Izawa, H., Mizuguchi, Y., Miura, O., Demura, S., Deguchi, K., Takano, Y.: J. Phys. soc. Jpn. 81, 103702 (2012)CrossRefADSGoogle Scholar
  9. 9.
    Kalai Selvan, G., Kanagaraj, M., Esakki Muthu, S., Jha, R., Awana, V.P.S., Arumugam, S.: Phys. Status Solidi RRL 7, 510–513 (2013)CrossRefGoogle Scholar
  10. 10.
    Tan, S.G., Li, L.J., Liu, Y., Tong, P., Zhao, B.C., Lu, W.J., Sun, Y.P. Phys. C 483, 94 (2012)CrossRefADSGoogle Scholar
  11. 11.
    Adam Phelan, W., Wallace, D.C., Arpino, K.E., Neilson, J.R., Livi, K. J., Seabourne, C.R., Scott, A.J., Mcqueen, T.M.: J. Am. Chem. Soc. 135, 5372–5374 (2013)CrossRefGoogle Scholar
  12. 12.
    Srivatsava, P., Shruti, Patnaik, S.: Supercond. Sci. Technol. 27, 055001 (2014)CrossRefADSGoogle Scholar
  13. 13.
    Mohanta, A., Behra, D., Panigrahi, S., Mishra, N.C.: Indian J. Phys. 83(4), 455–463 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Candida, C., Silva, McHenry, M.E. IEEE Trans. Appl. Supercond. 7(2) (1997)Google Scholar
  15. 15.
    Liyanawaduge, N.P., Singh, S.K., Kumar, A., Awana, V.P.S., Kishan, H.: J. Supercond. Nov. Magn. 24, 1599–1605 (2011)CrossRefGoogle Scholar
  16. 16.
    Luis De Los Santos, V., Angel Bustamante, D., Gonzalez, J.C., Juan Feijoo, L., Ana Osorio, A., Mitrelias, T., Majima, Y., Barnes, C.H.W.: Open superconductors J. 2, 19–27 (2010)CrossRefADSGoogle Scholar
  17. 17.
    Campbell, A. M., Evetts, J. E.: Adv. Phys. 21, 199 (1972)CrossRefADSGoogle Scholar
  18. 18.
    Singh, R.: J. Phys. D: Appl. Phys. 22, 1523–1527 (1989)CrossRefADSGoogle Scholar
  19. 19.
    Shekhar, C., Srivastava, A., Srivastava, P., Srivastava, P., Srivastava, O.N.: Supercond. Sci. Technol. 25, 045004 (2012)CrossRefADSGoogle Scholar
  20. 20.
    Blatter, G., Feigelman, M.Y., Geshkenbein, Y.B., Larkin, A.I., Vinokur, V.M.: Rev. Mod. Phys. 66, 1125 (1994)CrossRefADSGoogle Scholar
  21. 21.
    Dew-Hughes, D.: Phil. Mag. 30(2), 293–305 (1974)CrossRefADSGoogle Scholar
  22. 22.
    Larkin, A.I., Ovchinnikov, Y.N.: J. Low Temp. Phys. 34(3/4), 409–428 (1979)CrossRefADSGoogle Scholar
  23. 23.
    Kramer, E.J.: J. Appl. Phys. 44(3) (1973)Google Scholar
  24. 24.
    Enstrom, R. E., Appert, J. R.: J. Appl. Phys. 43(4) (1972)Google Scholar
  25. 25.
    Tachikawa, K., Tanaka, Y., Iwasa, Y.: J. Appl. Phys. 44(2) (1973)Google Scholar
  26. 26.
    Bychkov, Y.F., Verreshchagin, V.G., Karasik, V.R., Kurganov, G.B., Mal’Tsev, V.A. Sov. Phys. JETP 29(2) (1969)Google Scholar
  27. 27.
    Raychaudhuri, A.K., Takayama, T., Rinderer, L.: J. Low Temp. Phys. 41(1/2) (1980)Google Scholar
  28. 28.
    Gonzalez-Calbet, J.M., Badia, A., Vallet-Regf, M., Caneiro, A., Ramirez, J., Rillo, C., Lera, F., Navarro, R.: Phys. C 203, 223–230 (1992)CrossRefADSGoogle Scholar
  29. 29.
    Cheng, C.H., Yang, Y., Munroe, P., Zhao, Y.: Supercond. Sci. Technol. 20, 296–301 (2007)CrossRefADSGoogle Scholar
  30. 30.
    Tripathi, D., Dey, T.K.: J. App. Phys. 114, 093906 (2013)CrossRefADSGoogle Scholar
  31. 31.
    Yamasaki, H., Endo, K., Kosaka, S., Umeda, M., Yoshida, S., Kajimura, K.: Phys. Rev. Lett. 70,(21) (1993)Google Scholar
  32. 32.
    Song, L.W., Yang, M., Chen, E., Kao, Y.H.: Phys. Rev. B 45(6) (1992)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of PhysicsUniversity of Hyderabad, Central University P.O.HyderabadIndia

Personalised recommendations