Advertisement

Modeling the Effect of Thermal Field in Formation of Magnetic Flux Avalanches in Hard Superconductors

  • N. D. Espinosa-TorresEmail author
  • J. F. J. Flores-Gracia
  • A. D. Hernández de la Luz
  • J. A. Luna-López
  • J. Martínez-Juárez
  • G. Flores-Carrasco
Original Paper
  • 176 Downloads

Abstract

Magnetothermal instabilities are one of the uncharacteristic phenomena of interest in conventional type-II as well as in high-T c superconductors. Historically, some authors undertake to analyze the nature and origin of the magnetothermal instabilities of the critical state and flux jumps phenomena in superconductors in the light of theoretical and experimental results (Wipf, Phys. Rev. 161:404, 1967; Wipf, Cryogenics 31:936, 1992; Lee at al., J. Appl. Phys. 107:013902, 2010) [1, 2]. In contrast to previous reported works which had studied the magnetic flux avalanches in hard superconductors postulating an instability criterion, in this paper, we report the development of a theoretical model for describing the magnetization curves of type-II superconductors considering the fact that the jumps should arise naturally, i.e., without the need to impose a priori conditions of instability. The model developed is applied to make numerical calculations in order to get magnetization curves of MgB2 as well as to calculate and analyze the impact of changes in the thermal field and functions that describe the critical current. We investigate the effect of initial magnetic state on generation of magnetic flux avalanches. The initial state determines the evolution of the magnetization curves and their jumps. The results obtained with the application of this model allow us to reproduce the experimental conditions with greater accuracy than that achieved with models based on unstable conditions; further, the model predicts the impact of initial nonzero fields in the formation of avalanches.

Keywords

Avalanches Hard superconductor Critical current Magnesium diboride 

Notes

Acknowledgments

N.D. Espinosa-Torres acknowledges the financial support of CONACYT for the grant to carry out Ph.D. studies and the facilities given by ICUAP, CIDS, and IFUAP.

References

  1. 1.
    Wipf, S.L.: Phys. Rev. 161, 404 (1967). Cryogenics, 31, 936, 1992CrossRefADSGoogle Scholar
  2. 2.
    Lee, J.-Y., Lee, H.-J., Jung, M.-H., Lee, S.-I., Choi, E.-M., Kang, W.N.: Magnetic instability of MgB2 thin film triggered by the various sweeping rates of an applied magnetic field. J. Appl. Phys. 107, 013902 (2010)CrossRefADSGoogle Scholar
  3. 3.
    Nabialek, A., Vasiliev, S., Chabanenko, V., Pérez-Rodríguez, F., Piechota, S., Szymczak, H.: The influence of magnetic history on the stability of critical state and the dynamics of flux jumps in conventional NbTi superconductor. Acta. Physica. Polonica. A 118, 343 (2010)Google Scholar
  4. 4.
    Bean, C.P.: J. Appl. Phys. 41, 2482 (1970)CrossRefADSGoogle Scholar
  5. 5.
    Baltaga, I.V., Makarov, N.M., Yampol’skii, V.A., Fisher, L.M., Il’in, N.V., Voloshin, I.F.: Phys. Lett. A 148, 213 (1990)CrossRefADSGoogle Scholar
  6. 6.
    Voloshin, I.F., Il’in, N.V., Makarov, N.M., Fisher, L.M., Yampol’skii, V.A.: Zh. Eksp. Teor. Fiz. 53, 109 (1991). JETP Lett. 53, 115 (1991)Google Scholar
  7. 7.
    Baltaga, I.V., Makarov, N.M., Yampol’skii, V.A., Fisher, L.M., Voloshin, I.F.: Fiz. Nizk. Temp. 21, 411 (1995). Low Temp. Phys. 21, 320 (1995)ADSGoogle Scholar
  8. 8.
    Romero-Salazar, C., Morales, F., Escudero, R., Durán, A., Hernández-Flores, O.A.: Phys. Rev. B 76, 104521 (2007)CrossRefADSGoogle Scholar
  9. 9.
    Nabialek, A., Chabanenko, V., Vasiliev, S., Rusakov, V.F., Shushmakova, G., Szymczak, H.: J. Low Temp. Phys 153, 155 (2008)Google Scholar
  10. 10.
    Chabanenko, V.V., D’yachenko, A.I., Chabanenko, A.V., Szymczak, H., Piechota, S., Nabialek, A.: J. App. Phys. 83, 7324 (1998)CrossRefADSGoogle Scholar
  11. 11.
    Chabanenko, V.V., D’yachenko, A.I., Zalutskii, M.V., Rusakov, V.F., Szymczak, H., Piechota, S., Nabialek, A.J.: Appl. Phys 88, 5875 (2000)CrossRefGoogle Scholar
  12. 12.
    Mints, R.G., Rakhmanov, L.: Rev. Mod. Phys. 53, 551 (1981)CrossRefADSGoogle Scholar
  13. 13.
    Müller, K.-H., Andrikidis, C.: Phys. Rev. B 49, 1294 (1994)CrossRefADSGoogle Scholar
  14. 14.
    Chabanenko, V., Puźniak, R., Nabialek, A., Vasiliev, S., Rusakov, V., Huanqian, L., Szymczak, R., Szymczak, H., Jun, J., Karpiński, J., Finkel, V.: J. Low Temp. Phys. 130, 175 (2003)CrossRefADSGoogle Scholar
  15. 15.
    Nabialek, A., Wisniewski, A., Chabanenko, V.V., Vasiliev, S.V., Tsvetkov, I.V., Pérez-Rodríguez, F.: Influence of crystal anisotropy on the critical state stability and flux jumps dynamics in a single crystal of La1.85Sr0.15CuO4. Supercond. Sci. Technol. 25, 035005 (2012)CrossRefADSGoogle Scholar
  16. 16.
    Johansen, T.H., et al.: Supercond. Sci. Technol. 14, 726 (2001)CrossRefADSGoogle Scholar
  17. 17.
    Bobyl, A.V., Shantsev, D.V., Johansen, T.H., Kang, W.N., Kim, H.J., Choi, E.M., Lee, S.I.: Appl. Phys. Lett 80, 4588 (2002)CrossRefADSGoogle Scholar
  18. 18.
    Baziljevich, M., Bobyl, A.V., Shantsev, D.V., Altshuler, E., Johansen, T.H., Lee, S.I.: Physica C 369, 93 (2002)CrossRefADSGoogle Scholar
  19. 19.
    Goodman, B.B., Wertheimer, M.: Phys. Lett 18, 236 (1965)CrossRefADSGoogle Scholar
  20. 20.
    Durán, C.A., Gammel, P.L., Miller, R.E., Bishop, D.J.: Phys. Rev. B 52, 75 (1995)CrossRefADSGoogle Scholar
  21. 21.
    Leiderer, P., Boneberg, J., Brüll, P., Bujok, V., Herminghaus, S.: Phys. Rev. Lett. 71, 2646 (1993)CrossRefADSGoogle Scholar
  22. 22.
    Zhou, Y.-H., Yang, X.: Phys. Rev. B 74, 054507 (2006)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Taylanov, N.A.: Magnetothermal instabilities in type II superconductors cond-mat.supr-con pages 1–29. arXiv:1111.1416v1
  24. 24.
    Bean, C.P.: Phys. Rev. Lett. 8, 250 (1962). Rev. Mod. Phys. 36, 31 (1964), J. Appl. Phys. 41, 2482 1970CrossRefADSzbMATHGoogle Scholar
  25. 25.
    Vestgarden, J.I., Shantsev, D.V., Galperin, Y.M., Johansen, T.H.: Phys. Rev. B 84, 054537 (2011)CrossRefADSGoogle Scholar
  26. 26.
    Vestgarden, J.I., Shantsev, D.V., Galperin, Y.M., Johansen, T.H.: Sci. Rep 2, 886 (2012)CrossRefADSGoogle Scholar
  27. 27.
    Espinosa-Torres, N.D.: “Avalanchas de Flujo Magnético en Superconductores” Tesis de Maestría. Instituto de Física “Ing Luís Rivera Terrazas”. BUAP (2010)Google Scholar
  28. 28.
    Xu, M., Shi, D., Fox, R.F.: Generalized critical-state model for hard superconductors. Phys. Rev. B 42, 10773–10776 http://journals.aps.org/prb/pdf/10.1103/PhysRevB.42.10773
  29. 29.
    Romero-Salazar, C., Hernandez-Flores, O.A.: Exploring solutions for Type-II superconductors in critical state. Revista Mexicana de Física 59 pages 123–130 (2013). http://www.scielo.org.mx/pdf/rmf/v59n2/v59n2a4.pdf

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. D. Espinosa-Torres
    • 1
    Email author
  • J. F. J. Flores-Gracia
    • 1
  • A. D. Hernández de la Luz
    • 1
  • J. A. Luna-López
    • 1
  • J. Martínez-Juárez
    • 1
  • G. Flores-Carrasco
    • 1
  1. 1.Centro de Investigaciones en Dispositivos Semiconductores, ICUAP-BUAPPueblaMéxico

Personalised recommendations