Skip to main content

Supercurrent Generation by Spin-twisting Itinerant Motion of Electrons: Re-derivation of the ac Josephson Effect Including the Current Flow Through the Leads Connected to Josephson Junction

Abstract

Based on a new supercurrent generation mechanism proposed for the cuprate superconductivity (as reported by Koizumi (J. Supercond. Nov. Magn. 24:1997, 2011); Hidekata and Koizumi (J. Supercond. Nov. Magn. 24:2253, 2011); Koizumi et al. (J. Supercond. Nov. Magn. 27:121, 2014); Koizumi et al. (J. Supercond. Nov. Magn. 2014), we re-derive the ac Josephson effect including the current flow through the leads connected to the Josephson junction and the impressed electromotive force. It is noted that the actual experimental boundary condition where the Josephson frequency 2e V 0/h (h is Planck’s constant, e is the absolute value of electron charge, and V 0 is the dc voltage across the Josephson junction) is measured differently from the one assumed by Josephson, and 2e V 0/h is obtained by the electron tunneling instead of the Cooper pair tunneling. It is also indicated that the standard textbook description for the Josephson relation, “if a dc voltage V 0 is applied, the time-variation of ϕ occurs” (as reported by Feynman et al. (1965); Ashcroft and Mermin (1976); Kittel (1986); Tinkham (1996) (ϕ is related to the tunneling current as J s = J c sinϕ) should be rephrased, “if the time-variation of ϕ is introduced, a voltage difference V 0 appears.” We show that by adding the Rashba spin-orbit interaction to the Bardeen, Cooper, and Schrieffer (BCS) Hamiltonian, the spin-twisting itinerant motion of electrons is stabilized in the BCS superconductors; thus, it is suggested that the present, new supercurrent generation mechanism is also relevant to the BCS superconductors, i.e., the true origin of the supercurrent generation in the BCS superconductors may also be the spin-twisting itinerant motion of electrons.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Koizumi, H.: J. Supercond. Nov. Magn. 24, 1997 (2011)

    Article  Google Scholar 

  2. 2.

    Hidekata, R., Koizumi, H.: J. Supercond. Nov. Magn. 24, 2253 (2011)

    Article  Google Scholar 

  3. 3.

    Koizumi, H., Hidekata, R., Okazaki, A., Tachiki, M.: J. Supercond. Nov. Magn. 27, 121 (2014)

    Article  Google Scholar 

  4. 4.

    Koizumi, H., Okazaki, A., Abou Ghantous, M., Tachiki, M.: J. Supercond. Nov. Magn. doi:10.1007/s10948-014-2626-9

  5. 5.

    Feynman, R. P., Leighton, R., Sands, M.: Lectures on physics, Vol. 3 Addison-wesley, Reading MA (1965)

  6. 6.

    Ashcroft, N.W., Mermin, N.D.: Solid state pohysics. Sauders College, Philadelphia PA (1976)

    Google Scholar 

  7. 7.

    Kittel, C.: Introduction to solid state physics, 6th ed. Wiley, USA (1986)

    Google Scholar 

  8. 8.

    Tinkham, M., Introduction to superconductivity, 2nd ed. MacGraw-Hill, USA (1996)

    Google Scholar 

  9. 9.

    Onnes, H.K.: Leiden Comm. 119b (1911)

  10. 10.

    Onnes, H. K.: Leiden Comm. 122b (1911)

  11. 11.

    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    Bednorz , J.G., Müller, K.A.: Z. Phys. B64, 189 (1986)

    ADS  Article  Google Scholar 

  13. 13.

    Emery, V.J., Kivelson, S.A.: Nature 374, 434 (1995)

    ADS  Article  Google Scholar 

  14. 14.

    Longuet-Higgins, H.C., Öpik, U., Pryce, M.H.L., Sack, R.A.: Proc. Roy. Soc. London Ser. A 244(1) (1958)

  15. 15.

    Schrödinger, E.: Ann. Physik. 79, 361 (1926)

    Article  MATH  Google Scholar 

  16. 16.

    Mead, C.A., Truhlar, D.G.: J. Chem. Phys. 70, 2284 (1979)

    ADS  Article  Google Scholar 

  17. 17.

    Berry, M.V.: Proc. Roy. Soc. London Ser. A 391(45) (1984)

  18. 18.

    Rashba, E.I.: Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  19. 19.

    Josephson, B.D.: Phys. Lett. 1, 251 (1962)

    ADS  Article  MATH  Google Scholar 

  20. 20.

    Josephson, B.D.: Adv. Phys. 14, 419 (1965)

    ADS  Article  Google Scholar 

  21. 21.

    Cohen, M.H., Falicov, L.M., Phillips, J.C.: Phys. Rev. Lett. 8, 316 (1962)

    ADS  Article  MATH  Google Scholar 

  22. 22.

    Anderson, P.W., Rowell, J.M.: Phys. Rev. Lett. 10, 230 (1963)

    ADS  Article  Google Scholar 

  23. 23.

    Shapiro, S.: Phys. Rev. Lett. 11, 80 (1963)

    ADS  Article  Google Scholar 

  24. 24.

    Crimes, C.C.: Phys. Rev. 169, 397 (1968), Shapiro, S.

    ADS  Article  Google Scholar 

  25. 25.

    Fiske, M.D.: Rev. Mod. Phys. 36, 221 (1963)

    ADS  Article  Google Scholar 

  26. 26.

    Yanson, I.K., Svistunov, V.M., Dmitrenko, I.M.: J. Exptl. Theoret. Phys. (U.S.S.R.) 48, 976 (1965)

    Google Scholar 

  27. 27.

    Giavever, I.: Phys. Rev. Lett. 14, 904 (1965)

    ADS  Article  Google Scholar 

  28. 28.

    Rickayzen, G.: Theory of superconductivity. Interscience, New York (1965)

    MATH  Google Scholar 

  29. 29.

    Waldram, J.R.: Rep. Prog. Phys. 39, 751 (1976)

    ADS  Article  Google Scholar 

  30. 30.

    Anderson, P.W.: Phys. Rev. 112, 1900 (1958)

    ADS  Article  MathSciNet  Google Scholar 

  31. 31.

    Nambu, Y.: Phys. Rev. 117, 648 (1960)

    ADS  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Koizumi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koizumi, H., Tachiki, M. Supercurrent Generation by Spin-twisting Itinerant Motion of Electrons: Re-derivation of the ac Josephson Effect Including the Current Flow Through the Leads Connected to Josephson Junction. J Supercond Nov Magn 28, 61–69 (2015). https://doi.org/10.1007/s10948-014-2877-5

Download citation

Keywords

  • New supercurrent generation mechanism
  • Spin vortex
  • Spin vortex-induced loop current
  • Josephson effect