Skip to main content
Log in

Microstructure and Magnetic Properties of SrFe 12 O 19 Nano-sized Powders Prepared by Sol-Gel Auto-combustion Method with CTAB Surfactant

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

An Erratum to this article was published on 30 January 2015

Abstract

In this research, nano-sized powders of strontium hexaferrite were synthesized by sol-gel auto-combustion route using stoichiometric ratio of Fe/Sr. The effect cetyltrimethylammonium bromide (CTAB) addition on microstructure and magnetic properties of hexaferrite have been studied. The samples were characterized using X-ray diffraction (XRD), dynamic light scattering (DLS), vibration sample magnetometer (VSM), field emission scanning electron microscope (FESEM), and transmission electron microscope (TEM) techniques. The results revealed that CTAB addition causes a noticeable reduction in the amount of residual α-Fe2O3 phase, since presence of CTAB in the sol facilitates the entrance of Sr2+ ions into the reactions of hexaferrite formation. Also, the morphology of the particles was affected by CTAB addition. Irregular-shaped nanoparticles were synthesized without CTAB additions, while platelet-shaped nanoparticles were obtained by CTAB addition. The mechanism of strontium hexaferrite nanopowder formation has been explained. Magnetic measurements in the sample calcined at 800 °C for 1 h represented that CTAB addition increased the coercivity force (i H c) from 4.9 to 5.2 kOe and maximum magnetization (M max) from 48.4 to 60.4 emu/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhanyong, W., Liuming Z., Jieli, L., Huichun, Q., Yuli, Z., Yongzheng, F., Minglin, J., Jiayue, X.: Microwave-assisted synthesis of SrFe12O19 hexaferrites. J. Magn. Magn. Mater. 322, 2782–2785 (2010)

    Article  ADS  Google Scholar 

  2. Xia, A., Zuo, C., Chen, L., Jin, C., Lv, Y.: Hexagonal SrFe12O19 ferrites: hydrothermal synthesis and their sintering properties. J. Magn. Magn. Mater 332, 186–191 (2013)

    Article  ADS  Google Scholar 

  3. Wang, Y., Li, Q., Zhang, C., Li, B.: Effect of Fe/Sr mole ratios on the formation and magnetic properties of SrFe12O19 microtubules prepared by sol–gel method. J. Magn. Magn. Mater. 321, 3368–3372 (2009)

    Article  ADS  Google Scholar 

  4. Singh, P., Babbar, V.K., Razdan, A., Srivastava, S.L., Agrawal, V.K., Goel, T.C.: Dielectric constant, magnetic permeability and microwave absorption studies of hot-pressed Ba-CoTi hexaferrite composites in X-band. J. Mater. Sci. 41, 7190–7196 (2006)

    Article  ADS  Google Scholar 

  5. Kuo, H.M., Hsui, Te-Fa., Tuo, Y.S., Yuan, C.L.: Microwave adsorption of core–shell structured Sr(MnTi)xFe 12−2xO19/PANI composites. J. Mater. Sci 47, 2264–2270 (2012)

    Article  ADS  Google Scholar 

  6. Jacobo, S.E., Blesa, M.A., Domingo-Pascual, C., Rodpigguez-Clemente, R.: Synthesis of ultrafine particles of barium ferrite by chemical coprecipitation. J. Mater. Sci 32, 1025–1028 (1997)

    Article  ADS  Google Scholar 

  7. Calleja, A., Tijero, E., Martinez, B., Pinol, S., Sandiumenge, F., Obradors, X.: Hexaferrite particles by coprecipitation and lyophilization. J. Magn. Magn. Mater 196–197, 293–294 (1999)

    Article  Google Scholar 

  8. Barb, D., Diamandescu, L., Rusi, A.: Preparation of barium hexaferrite by a hydrothermal method: structure and magnetic properties. J. Mater. Sci 21, 1118–1122 (1986)

    Article  ADS  Google Scholar 

  9. Ataie, A., Harris, I.R., Ponton, C.B.: Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis conditions. J. Mater. Sci 30, 1429–1433 (1995)

    Article  ADS  Google Scholar 

  10. Elvin, G., Parkin, I.P.P., Bui, Q.T., Barquin, L.F., Pankhurst, Q.A., Komarov, A.V., Morozov, Y.G.: Self-propagating high-temperature synthesis of SrFe12O19 from reactions of strontium superoxide, iron metal and iron oxide powders. J. Mater. Sci. Lett 16, 1237–1239 (1997)

    Article  Google Scholar 

  11. Ding, J., Miao, W.F., McCormick, P.G., Street, R.: High-coercivity ferrite magnets prepared by mechanical alloying. J. alloys comp. 281, 32–36 (1998)

    Article  Google Scholar 

  12. Ketov, S.V., Yagodkin, Yu.D., Lebed, A.L., Chernopyatova, Yu. V., Khlopkov, K.: Structure and magnetic properties of nanocrystalline SrFe12O19 alloy produced by high-energy ball milling and annealing. J. Magn. Magn. Mater 300, e479–e481 (2006)

    Article  ADS  Google Scholar 

  13. Surig, C., Hempel, K.A., Bonnenborg, D.: Hexaferrite particles prepared by sol-gel technique. IEEE Trans. Magn. 30, 4092–4094 (1994)

    Article  ADS  Google Scholar 

  14. Srivastava, A., Singh, P., Gupta, M.P.: Barium ferrite: preparation by liquid mix technique and its characterization. J. Mater. Sci. 22, 1489–1494 (1987)

    Article  ADS  Google Scholar 

  15. Pullar, R.C., Taylor, M.D., Bhattacharya, A.K.: Novel aqueous sol–gel preparation and characterization of barium M ferrite BaFe12O19 fibers. J. Mater. Sci. 32, 349–352 (1997)

    Article  ADS  Google Scholar 

  16. Alamolhoda, S., Seyyed Ebrahimi, S.A., Badiei, A.: Optimization of the Fe/Sr ratio in processing of ultrafine strontium hexaferrite powders by a sol–gel auto combustion method. Phys. Met. Metall. 102, S71–S73 (2006)

    Article  Google Scholar 

  17. Sivakumar, M., Gedanken, A., Zhong, W., Du, Y.W., Bhattacharya, D., Yeshurun, Y., Felner, I.: Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe(CO)5. J. Magn. Magn. Mater 268, 95–104 (2004)

    Article  ADS  Google Scholar 

  18. Ghobeiti Hasab, M., Seyyed Ebrahimi, S.A., Badiei, A.: Comparison of the effects of cationic, anionic and nonionic surfactants on the properties of Sr-hexaferrite nanopowder synthesized by a sol–gel auto-combustion method. J. Magn. Magn. Mater. 316, e13—e15 (2007)

    Article  Google Scholar 

  19. Ghobeiti Hasab, M., Seyyed Ebrahimi, S.A., Badiei, A.: An investigation on physical properties of strontium hexaferrite nanopowder synthesized by a sol–gel auto-combustion process with addition of cationic surfactant. J. Eur. Ceram. Soc. 27, 3637–3640 (2007)

    Article  Google Scholar 

  20. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969)

    Article  Google Scholar 

  21. Martell, E., Smith, R.M.: Critical stability constants, Vol. 3. Springer, New York (1977)

  22. Topallar, H., Karadag, B.: Mechanism of micelle formation in sodium dodecyl sulfate and cetyltrimethylammonium bromide. J. Surfactants Deterg. 1, 49–51 (1998)

    Article  Google Scholar 

  23. Dean, J.A.: Lange’s handbook of chemistry. 15 th edn. Mc Graw Hill, New York (1999)

    Google Scholar 

  24. Alamolhoda, S., Seyyed Ebrahimi, S.A., Badiei, A.: A study on the formation of strontium hexaferrite nanopowder by a sol–gel auto-combustion method in the presence of surfactant. J. Magn. Magn. Mater 303, 69–72 (2006)

    Article  ADS  Google Scholar 

  25. Chen, D.Y., Meng, Y.Y., Zeng, D.C., Liu, Z.W., Yu, H.Y., Zhong, X.C.: CTAB-assisted low-temperature synthesis of SrFe12O19 ultrathin hexagonal platelets and its formation mechanism. Mater. Lett. 76, 84–86 (2012)

    Article  Google Scholar 

  26. Singh, I., Bedi, R.K.: Surfactant-assisted synthesis, characterizations, and room temperature ammonia sensing mechanism of nanocrystalline CuO. Solid State Sci. 13, 2011–2018 (2011)

    Article  ADS  Google Scholar 

  27. Pu, Z., Cao, M., Yang, J., Huang, K., Hu, C.: Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes. Nanotechnology 17, 799–804 (2006)

    Article  ADS  Google Scholar 

  28. Zhang, H., Shen, C., Chen, S., Xu, Z., Liu, F., Li, J., Gao, H.: Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template. Nanotechnology 16, 267–272 (2005)

    Article  ADS  Google Scholar 

  29. Kang, S.K., Chah, S., Yun, C.Y., Yi, J.: Aspect ratio controlled synthesis of gold nanorods. Korean J. Chem. Eng 20, 1145–1148 (2003)

    Article  Google Scholar 

  30. Mula, S., Mondal, K., Ghosh, S., Pabi, S.K.: Structure and mechanical properties of Al–Ni–Ti amorphous powder consolidated by pressure-less, pressure-assisted and spark plasma sintering. Mater. Sci. Eng. A 527, 3757–3763 (2010)

    Article  Google Scholar 

  31. Lin, C.S., Hwang, C.C., Huang, T.H., Wang, G.P., Peng, C.H.: Fine powders of SrFe12O19 with SrTiO3 additive prepared via a quasi-dry combustion synthesis route. Mater. Sci. Eng. B 139, 24–36 (2007)

    Article  Google Scholar 

  32. Saravanan, P., Arvindha Babu, D., Chandrasekaran, V.: Microstructure, phase evolution and magnetic properties of melt-spun SmCo6.8− xSn x Zr 0.2 (x = 0, 0.1 and 0.3) ribbons. Intermetallics 19, 651–656 (2011)

  33. Dzyaloshinsky, I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958)

    Article  ADS  Google Scholar 

  34. Bødker, F., Hansen, M.F., Koch, C.B., Lefmann, K., Mørup, S.: Magnetic properties of hematite nanoparticles. Phys. Rev. B 61, 6826–6838 (2000)

    Article  ADS  Google Scholar 

  35. Moulson, A.J., Herbert, J.M.: Electroceramics Materials. Properties. Applications 2nd edn. John Wiley & Sons, Chichester (2003)

    Google Scholar 

  36. Spaldin, N.A.: Magnetic Materials, Fundamentals and Applications 2nd edn. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  37. Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci 57, 1191–1334 (2012)

    Article  Google Scholar 

  38. Zi, Z.F., Sun, Y.P., Zhu, X.B., Yang, Z.R., Dai, J.M., Song, W.H.: Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method. J. Magn. Magn. Mater. 320, 2746–2751 (2008)

    Article  ADS  Google Scholar 

  39. Nga, T.T.V., Duong, N.P., Loan, T.T., Hien, T.D.: Key step in the synthesis of ultrafine strontium ferrite powders (SrFe12O19) by sol–gel method. J. Alloys Comp. 610, 630–634 (2014)

    Article  Google Scholar 

  40. Xu, Y.F., Ma, Y.Q., Xu, S.T., Zan, F.L., Zheng, G.H., Dai, Z.X.: Effects of vacancy and exchange-coupling between grains on magnetic properties of SrFe12O19 and α-Fe2O3 composites. Mater. Res. Bull. (2014). doi:10.1016/j.materresbull.2014.05.017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Alamolhoda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirkazemi, S.M., Alamolhoda, S. & Ghiami, Z. Microstructure and Magnetic Properties of SrFe 12 O 19 Nano-sized Powders Prepared by Sol-Gel Auto-combustion Method with CTAB Surfactant. J Supercond Nov Magn 28, 1543–1549 (2015). https://doi.org/10.1007/s10948-014-2872-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2872-x

Keywords

Navigation