Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 2, pp 535–539 | Cite as

Investigation of Temperature Dependence of the Irreversibility Line of GdBa 2 Cu 3 O7−δ Added with Nanosized Ferrite ZnFe 2 O 4

  • R. Awad
  • M. Roumié
  • S. Isber
  • S. Marhaba
  • A. I. AbouAly
  • H. BasmaEmail author
Original Paper


Superconducting samples of the type (ZnFe2O4) x GdBa2Cu3O7−δ were synthesized by the conventional solid-state reaction technique. The nanosized (ZnFe2O4) content x varied from 0 to 0.1 wt% of the samples’ total mass. The prepared samples were characterized using X-ray powder diffraction (XRD) and scanning and transmission electron microscopes (SEM and TEM). The effect of ZnFe2O4 addition, which acts as flux pinning centers, was investigated using ac magnetization at different applied dc magnetic fields. It was found that addition of the nanosized (ZnFe2O4) up to 0.06 wt% enhances the critical current density J c and the superconducting transition temperature T c. On the other hand, the superconducting properties of these samples are deteriorated for x > 0.06 wt%. The irreversibility line was thermally activated. The logarithmic plot of H irr versus (1 − T irr/ T c(0)) shows a crossover at about 500 Oe, reflecting the transition from two- to three-dimensional vortex fluctuations. The B irrT curves are well fitted according to Matsushita’s model, which is based on the de-pinning mechanism caused by thermally activated flux creep.


GdBa2Cu3O7−δ Nanoferrite ZnFe2O4 Ac magnetic susceptibility Irreversibility field 



This work was performed in the superconductivity and metallic-glass lab, Faculty of Science, Alexandria University, EGYPT and in Collaboration with SI, Physics Department at American University of Beirut, Beirut, Lebanon.


  1. 1.
    Zhang, Y.F., Izumi, M., Li, Y.J., Murakami, M., Gao, T., Liu, Y.S., Li, P.L.: J. Physica C 47, 1840 (2011)Google Scholar
  2. 2.
    Sakai, N., Lee, S., Chikumoto, N., Izumi, T, Tanabe, K: J. Physica C 471, 1075 (2011)CrossRefADSGoogle Scholar
  3. 3.
    Xu, C., Hu, A., Ichihara, M., Sakai, N., Hirabayashi, I., Izumi, M.: J. Physica C 460–462, 1341 (2007)CrossRefGoogle Scholar
  4. 4.
    Xu, C., Hu, A., Sakai, N., Izumi, M., Hirabayashi, I.: J. Physica C 357, 445–448 (2006)Google Scholar
  5. 5.
    Xu, Y., Hu, A., Xu, C., Sakai, N., Hirabayashi, I., Izumi, M.: Physica J. C 468, 1363 (2008)CrossRefADSGoogle Scholar
  6. 6.
    Mumtaz, M., Naeem, S., Nadeem, K., Naeem, F., Jabbar, A., Zheng, Y.R., Khan, N.A., Imran, M.: J. Solid State Sci. 22, 21 (2013)CrossRefADSGoogle Scholar
  7. 7.
    Gardner, H.J., Kumar, A., Yu, L., Xiong, P., Warusawithana, M.P., Wang, L., Vafek, O., Schlom, D.G.: J. Nat. Phys. 7, 895 (2011)CrossRefGoogle Scholar
  8. 8.
    Schilling, A., Jin, R., Guo, J.D., Ott, H.R.: J. Phys. Rev. Lett. 71, 1899 (1993)CrossRefADSGoogle Scholar
  9. 9.
    Abou Aly, A.I., Awad, R., Isber, S., Mohammed, N.H., Motaweh, H.A., El-Said Bakeer, D.: J. Alloys Compd. (2014). (accepted)Google Scholar
  10. 10.
    Khan, N.A., Mumtaz, M., Ullah, A., Hassan, N., Khurram, A.A. J. Alloys Compd 507, 142 (2010)CrossRefGoogle Scholar
  11. 11.
    Khan, N.A., Saleem, A., Hussain, S.T.: J. Supercond. Nov. Magn. 25, 1725 (2012)CrossRefGoogle Scholar
  12. 12.
    Bahgat, A.A., Shaisha, E.E., Saber, M.M.: J. Physica B 399, 70 (2007)CrossRefADSGoogle Scholar
  13. 13.
    Namuco, S.B., Lao, M.L., Sarmago, R.V.: J. Physics Procedia. 45, 169 (2013)CrossRefADSGoogle Scholar
  14. 14.
    Chen, D.X., Mei, Y., Luo, H.L.: J. Physica C 167, 317 (1990)CrossRefADSGoogle Scholar
  15. 15.
    Mezzetti, E., Gerbaldo, G., Ghigo, G., Gozzelino, L., Minetti, B.: J. Phys. Rev. B 60, 7623 (1999)CrossRefADSGoogle Scholar
  16. 16.
    Yeshurn, Y., Malozemoff, A.: J. Phys. Rev. Lett. 60, 2202 (1987)CrossRefADSGoogle Scholar
  17. 17.
    Chan, K., Liou, S.H.: Phys. J. Rev. B 45, 5547 (1992)CrossRefADSGoogle Scholar
  18. 18.
    Huang, Z., Xue, Y., Meng, R., Chu, C.: J. Phys. Rev. B 49, 4218 (1994)CrossRefADSGoogle Scholar
  19. 19.
    Xu, W., Suenaga, O.: J. Phys. Rev. B 43, 5516 (1991)CrossRefADSGoogle Scholar
  20. 20.
    Estrela, P., Abilio, C., Godinho, M., Tholence, J.L., Capponi, J.J.: J. Physica C 235–240, 2731 (1994)CrossRefGoogle Scholar
  21. 21.
    Fisher, M.P.A.: J. Phys. Rev. Lett. 62, 1415 (1989)CrossRefADSGoogle Scholar
  22. 22.
    Miu, L.: Phys. J. Rev. B 46, 1172 (1992)CrossRefADSGoogle Scholar
  23. 23.
    Kim, D.H., Gray, K.E., Kampwirth, R.T., Smith, J.C., Richardson, T.J., Kang, J.H., Talvacchio, J., Eddy, M.: J. Physica C 177, 431 (1991)CrossRefADSGoogle Scholar
  24. 24.
    Safar, H., Gammel, P.L., Bishop, D.: J. Phys. Rev. Lett. 68, 2672 (1992)CrossRefADSGoogle Scholar
  25. 25.
    Matsushita, T.: J. Physica C 205, 289 (1993)CrossRefADSGoogle Scholar
  26. 26.
    Matsushita, T.: J. Physica C 164, 150 (1990)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. Awad
    • 1
    • 2
  • M. Roumié
    • 3
  • S. Isber
    • 4
  • S. Marhaba
    • 1
  • A. I. AbouAly
    • 2
  • H. Basma
    • 1
    Email author
  1. 1.Physics Department, Faculty of ScienceBeirut Arab University (BAU)BeirutLebanon
  2. 2.Physics Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  3. 3.Accelerator Laboratory, Lebanese Atomic Energy CommissionCNRSBeirutLebanon
  4. 4.Department of PhysicsAmerican University of BeirutBeirutLebanon

Personalised recommendations