Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 3, pp 1017–1020 | Cite as

Optical Study of Tetragonal Domains in LaAlO3/SrTiO3

  • Z. Erlich
  • Y. Frenkel
  • J. Drori
  • Y. Shperber
  • C. Bell
  • H. K. Sato
  • M. Hosoda
  • Y. Xie
  • Y. Hikita
  • H. Y. Hwang
  • B. Kalisky
Original Paper

Abstract

Scanning superconducting quantum interference device (SQUID) measurements recently revealed enhanced channels of conductivity at the conducting LaAlO3/SrTiO3 (LAO/STO) interface (Kalisky et al. Nat. Mater. 12, 1091 2013). The orientation of the channels and their thermal behavior suggest that they originate as a consequence of the STO tetragonal domain formation which sets in below ∼105 K. In this work, we use polarized light microscopy to acquire images of the tetragonal domains in the same group of LAO/STO samples. We looked at the configuration of the domains (orientation and spacing) and followed their behavior as a function of temperature and back-gate voltage. The optical data agrees with the electrical behavior mapped magnetically. This direct and independent study of the domain structure confirms that the channel-like conductivity in LAO/STO is due to the STO tetragonal domain structure and emphasizes the importance of STO physics to the interfacial properties. These results demonstrate how small structural changes in perovskite crystals strongly influence the electronic characteristics of heterostructures.

Keywords

LaAlO3/SrTiO3 Polarized light microscopy Tetragonal domains 

References

  1. 1.
    Kalisky, B., et al.: Nat. Mater. 12, 1091 (2013)CrossRefADSGoogle Scholar
  2. 2.
    Ohtomo, A., Hwang, H. Y.: Nat. 427, 423 (2004)CrossRefADSGoogle Scholar
  3. 3.
    Reyren, N., et al.: Sci. 317, 1196 (2007)CrossRefADSGoogle Scholar
  4. 4.
    Caviglia, A. D., et al.: Nat. 456, 624 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Bell, C., et al.: Phys. Rev. Lett. 103, 226802 (2009)CrossRefADSGoogle Scholar
  6. 6.
    Ben Shalom, M., et al.: Phys. Rev. Lett. 105, 206401 (2010)CrossRefADSGoogle Scholar
  7. 7.
    Dikin, D.A., et al.: Phys. Rev. Lett. 107, 056802 (2011)CrossRefADSGoogle Scholar
  8. 8.
    Thiel, S., et al.: Sci. 313, 1942 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Cen, C., et al.: Nat. Mater. 7, 298 (2008)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Brinkman, A., et al.: Nat. Mater. 6, 493 (2007)CrossRefADSGoogle Scholar
  11. 11.
    Ariando, et al: Nat. Commu. 2, 188 (2010)Google Scholar
  12. 12.
    Seri, S., Klein, L.: Phys. Rev. B 80, 180410 (2009)CrossRefADSGoogle Scholar
  13. 13.
    Bert, J.A., et al.: Nat. Phys. 7, 767 (2011)CrossRefGoogle Scholar
  14. 14.
    Kalisky, B., et al.: Nat. Commun. 3, 922 (2012)CrossRefADSGoogle Scholar
  15. 15.
    Honig, M. , et al.: Nat. Mater. 12, 1112 (2013)CrossRefADSGoogle Scholar
  16. 16.
    Cowley, R.A.: Phys. Rev. 134, A981 (1964)CrossRefADSGoogle Scholar
  17. 17.
    Lytle, F.W.: J. Appl. Phys. 35, 2212 (1964)CrossRefADSGoogle Scholar
  18. 18.
    Sawaguchi, E., Kikuchi, A., Kodera, Y.: J. Phys. Soc. Japan 18, 459 (1963)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Z. Erlich
    • 1
  • Y. Frenkel
    • 1
  • J. Drori
    • 2
  • Y. Shperber
    • 1
  • C. Bell
    • 3
    • 4
  • H. K. Sato
    • 3
  • M. Hosoda
    • 3
  • Y. Xie
    • 3
  • Y. Hikita
    • 3
  • H. Y. Hwang
    • 3
    • 5
  • B. Kalisky
    • 1
  1. 1.Department of Physics and Institute of Nanotechnology and Advanced MaterialsBar-Ilan UniversityRamat-GanIsrael
  2. 2.Department of Condensed Matter PhysicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.SLAC National Accelerator LaboratoryStanford Institute for Materials and Energy SciencesMenlo ParkUSA
  4. 4.H. H. Wills Physics LaboratoryUniversity of BristolBristolUK
  5. 5.Department of Applied PhysicsStanford UniversityStanfordUSA

Personalised recommendations