Skip to main content
Log in

Thermal Conductivity of n-Aluminium Nitride-Added MgB2 Superconductor in Normal and Superconducting State

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Thermal conductivity (k) of 0, 5, 10, and 15 wt.% aluminium nitride (n-AlN)-added polycrystalline MgB 2 superconductors, synthesized by solid reaction is discussed both in the normal and superconducting states between 20 and 300 K. The prepared samples are characterized using X-ray diffraction (XRD) and field electron gun scanning electron microscope (FEG–SEM). Resistivity measurement confirms a decrease in superconducting transition temperature of MgB 2 (T c=38.5 K) with n-AlN addition and decreases to ∼35 K in case of 15 wt.% n-AlN-added MgB 2 sample. Thermal conductivity of both MgB 2 and n-AlN-added MgB 2 pellets does not show any hump around T c, and the absolute values of k decrease with increasing n-AlN in MgB 2. Temperature dependence of the thermal conductivity of MgB 2 and n-AlN-added MgB 2 has been analyzed, assuming the role of both electrons and phonons. The Wiedemann–Franz law does not work well for the present samples, which indicates inelastic scattering (L eff < L 0). Thermal conductivity of MgB 2 and n-AlN-added MgB 2 pellets is explained by assuming effective Lorentz number, L eff= 0.1 L 0. Electronic thermal conductivity in superconducting state (\(k_{\text {el}}^{\mathrm {s}} )\) follows “two-gap model” and has been used to estimate the values of band gaps, relative contribution of each band in thermal transport, and intraband scattering relaxation time. The estimated values are fairly consistent with the previously reported results for MgB 2. We further confirm that n-AlN addition in MgB 2 introduces disorders in π bands, which reduce the π band gapsand intraband relaxation time (\(\tau _{\pi }^{\text {im}})\). The lattice contribution of thermal conductivity in both normal and superconducting states is analyzed in the terms of Callaway’s model, assuming various phonon scatterings. Our analysis indicates that the lattice thermal conductivity of MgB 2 is dominated by phonon-sheet-like fault scattering. Addition of n-AlN in MgB 2 enhances the phonon scattering from sheet-like faults, and dislocations induced strain field scattering by >7 times compared to that for pure MgB 2 pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Nature (London) 410, 63–64 (2001)

    Article  ADS  Google Scholar 

  2. Bouquet, F., Wang, Y., Fisher, R. A., Hinks, D.G., Jorgensen, J. D., Junod, A., Phillips, N. E.: Europhys. Lett. 56, 856–862 (2001)

    Article  ADS  Google Scholar 

  3. Fisher, R.A., Bouquet, F., Phillips, N.E., Hinks, D.G., Jorgensen, J.D.: arXiv:cond-mat/0107072

  4. Choi, H. J., Roundy, D., Sun, H., Cohen, M.L.: Nature (London) 418, 758–760 (2002)

    Article  ADS  Google Scholar 

  5. Liu, A. Y., Mazin, I. I., Kortus, J.: Phys. Rev. Lett. 87, 087005 (2001)

    Article  ADS  Google Scholar 

  6. Mazin, I. I., Andersen, O. K., Jepsen, O., Dolgov, O., Kortus, J., Golubov, A. A., Kuz’menko, A. B., van der Mare, D.: Phys. Rev. Lett. 89, 107002 (2002)

    Article  ADS  Google Scholar 

  7. Anshukova, N.V., Bulychev, B., Golovashkin, A., Ivanova, L., Minakov, A., Rusakov, A.: Phys. Solid State 45, 1207–1212 (2003)

    Article  ADS  Google Scholar 

  8. Lal, R., Vajpayee, A., Awana, V.P.S., Kishan, H., Awasthi, A.M.: Phys. C 469, 106–110 (2009)

    Article  ADS  Google Scholar 

  9. Bauer, E., Paul, Ch., Berger, St., Majumdar, S., Michor, H., Giovannini, M., Saccone, A., Bianconi, A.: J. Phys.: Cond. Matt. 13, L487–L493 (2001)

    ADS  Google Scholar 

  10. Muranaka, T., Akimitsu, J., Sera, M.: Phys. Rev. B 64, 020505 (2001)

    Article  ADS  Google Scholar 

  11. Schneider, M., Lipp, D., Gladun, A., Zahn, P., Handstein, A., Fuchs, G., Drechsler, S. L., Richter, M., Muller, K. H., Rosner, H.: Phys. C 363, 6–12 (2001)

    Article  ADS  Google Scholar 

  12. Solugobenko, A.V., Jun, J., Kazakov, S.M., Karpinski, J., Ott, H.R.: Phys. Rev. B 66, 014504 (2002)

    Article  ADS  Google Scholar 

  13. Putti, M., Braccini, V., Galleani d’Agliano, E., Napoli, F., Pallecchi, I., Siri, A.S., Manfrinetti, P., Palenzona, A.: Supercond. Sci. Technol. 16, 188–192 (2003)

    Article  ADS  Google Scholar 

  14. Putti, M., Braccini, V., Galleani d’Agliano, E., Napoli, F., Pallecchi, I., Siri, A.S., Manfrinetti, P., Palenzona, A.: Phys. Rev. B 67, 064505 (2003)

    Article  ADS  Google Scholar 

  15. Mucha, J., Pekala, M., Szydlowska, J., Gadomski, W., Akimitsu, J., Fagnard, J.F, Vanderbemden, P., Cloots, R., Ausloos, M.: Supercond. Sci. Technol. 16, 1167–1172 (2003)

    Article  ADS  Google Scholar 

  16. Wu, B. M., Yang, D.S., Zeng, W.H., Li, S.Y., Li, B., Fan, R., Chen, X. H., Cao, L. Z., Ausloos, M.: Supercond. Sci. Technol. 17, 1458–1463 (2004)

    Article  ADS  Google Scholar 

  17. Chen, X. K., Konstantinovic, M. J., Irwin, J.C.: Phys. Rev. Lett. 157002, 87 (2001)

    Google Scholar 

  18. Yakinci, M.E., Balci, Y., Aksan, M.A.: Phys. C 408–410, 684–685 (2004)

    Article  Google Scholar 

  19. Sologubenko, A. V., Zhigadlo, N. D., Kazakov, S. M., Karpinski, J., Ott, H. R.: Phys. Rev. B 71, 020501 (2005)

    Article  ADS  Google Scholar 

  20. Sologubenko, A. V., Zhigadlo, N. D., Karpinski, J., Ott, H. R.: Phys. Rev. B 74, 184523 (2006)

    Article  ADS  Google Scholar 

  21. Aksan, M.A., Yakinci, M.E., Guldeste, A.: J. Alloys Compd. 424, 33–40 (2006)

    Article  Google Scholar 

  22. Gahtori, B., Lal, R., Agarwal, S. K., Kuo, Y. K., Sivakumar, K. M., Hsu, J. K., Lin, J. Y., Rao, A.: Phys. Rev. B 75, 184513 (2007)

    Article  ADS  Google Scholar 

  23. Chen, S. K., Lockman, Z., Wei, M., Glowacki, B. A., MacManus-Driscoll, J. L.: Appl. Phys. Lett. 86, 242501 (2005)

    Article  ADS  Google Scholar 

  24. Yong, S., Yong-gai, H., Gui-ying, Q., Wen-jun, Z., Fu-ren, X., Bo, L.: Trans. Non-ferrous Method Soc. China 19, s706–s710 (2009)

    Article  Google Scholar 

  25. Vinod, K., Varghese, N., Abhilash, R. G., Symaprasad, U., Roy, S. B.: J. Alloys Compd. 464, 33–37 (2008)

    Article  Google Scholar 

  26. Toulemonde, P., Musolino, N., Flukiger, R.: Supercond. Sci. Technol. 16, 231–236 (2003)

    Article  ADS  Google Scholar 

  27. Zhao, Y., Huang, D. X., Feng, Y., Cheng, C. H., Machi, T., Koshizuka, N., Murakami, M.: Appl. Phys. Lett. 80, 1640–1642 (2002)

    Article  ADS  Google Scholar 

  28. Wu, Y. F., Lu, Y. F., Li, J. S., Chen, S. K., Yan, G., Pu, M. H., Li, C. S., Zhang, P. X.: Phys. C 467, 38–42 (2007)

    Article  ADS  Google Scholar 

  29. Kim, J. H., Dou, S. X., Wang, J. L., Shi, D. Q., Xu, X., Hossain, M. S. A., Yeoh, W. K., Choi, S., Kiyoshi, T.: Supercond. Sci. Technol. 20, 448–451 (2007)

    Article  ADS  Google Scholar 

  30. Morisada, Y., Sakurai, T., Miyamoto, Y.: Int. J. Appl. Ceram. Technol. 374–380, 1 (2004)

    Google Scholar 

  31. Awana, V. P. S., Vajpayee, A., Mudgel Rawat, R., Acharya, S., Kishan, H., Takayama-Muromachi, E., Narlikar, A. V., Felner, I.: Phys. C 467, 67–72 (2007)

    Article  ADS  Google Scholar 

  32. Hinks, D.G., Jorgensen, J.D., Zheng, H., Short, S.: Physica C 382, 166–176 (2002)

    Article  ADS  Google Scholar 

  33. Singh, V., Chauhan, P.: J. Phys. Chem. Solids 1074–1079, 70 (2009)

    Google Scholar 

  34. Awana, V.P.S., Vajpayee, A., Mudgel, M., Ganesan, V., Awasthi, A.M., Bhalla, G.L., Kishan, H.: Eur. Phys. J. B 62, 281–294 (2008)

    Article  ADS  Google Scholar 

  35. Susner, M. A., Bhatia, M., Sumption, M. D., Collings, E. W.: J. Appl. Phys. 105, 103916 (2009)

    Article  ADS  Google Scholar 

  36. Callaway, J.: Phys. Rev. 113, 1046–1051 (1959)

    Article  ADS  Google Scholar 

  37. Fagaly, R. L.: Cryogenics 20, 644 (1980)

    Article  ADS  Google Scholar 

  38. Brinkman, A., Golubov, A. A., Rogalla, H.: Phys. Rev. B 180517 (R), 65 (2007)

    Google Scholar 

  39. Tewordt, L., Wolkhausen, Th.: Solid State Commun. 70, 839–844 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, D., Dey, T.K. Thermal Conductivity of n-Aluminium Nitride-Added MgB2 Superconductor in Normal and Superconducting State. J Supercond Nov Magn 27, 2011–2021 (2014). https://doi.org/10.1007/s10948-014-2573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2573-5

Keywords

Navigation