Skip to main content
Log in

Evolution of High Coercivity in CoPt Nanoparticles Through Nitrogen Assisted Annealing

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The presence of H 2 along with an inert gas during annealing was considered as a prerequisite in achieving high coercivity in alloys such as FePt and CoPt nanoparticles synthesized through chemical methods. CoPt nanoparticles were synthesized using a one-step polyol process without using any surfactant and annealed at various temperatures in N 2 atmosphere. The magnetic properties of Co 40Pt 60 sample annealed at 700 oC in N 2 atmosphere showed a room temperature coercivity of 8.4 kOe. The magnetic interactions present in the samples were studied using δM measurements. The evolution of high coercivity in the samples annealed at 700 oC showed that N 2 is a cheaper alternative to the existing reducing gas mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Christodoulides, J.A., Zhang, Y., Hadjipanayis, G.C., Fountzoulas, C.IEEE Trans. Magn. 36, 2333 (2000)

    Article  ADS  Google Scholar 

  2. Dannenberg, A., Gruner, M.E., Entel, P.Phys. Rev. B. 80, 245438 (2009)

    Article  ADS  Google Scholar 

  3. Tzitzios, V., Niarchos, D., Gjoka, M., Boukos, N., Petridis, D.J. Am. Chem. Soc. 127, 13756 (2005)

    Article  Google Scholar 

  4. Zhang, Y.J., Yang, Y.T., Liu, Y., Wang, Y.X., Yang, L.L., Wei, M.B., Fan, H.G., Zhai H.J., Liu, X.Y., Liu, Y.Q., Yang, N.N., Wu, Y.H., Yang, J.H.J. Phys. D: Appl. Phys. 44, 295003 (2011)

    Article  Google Scholar 

  5. Alam, A., Kraczek, B., Johnson, D.D.Phys. Rev. B. 82, 024435 (2010)

    Article  ADS  Google Scholar 

  6. Sato, K.Nat. Mater. 8, 924 (2009)

    Article  ADS  Google Scholar 

  7. Lewis, L.H., Kim, J., Barmak, K.Physica, B. 327, 190 (2003)

    Article  ADS  Google Scholar 

  8. Du, X., Inokuchi, M., Toshima, N.J. Magn. Magn. Mater. 299, 21 (2006)

    Article  ADS  Google Scholar 

  9. Demortie‘re, A., Petit, C.Langmuir 23, 8575 (2007)

    Article  Google Scholar 

  10. Yu, A.C.C., Mizuno, V., Sasaki, Y., Kondo, H.Appl. Phys. Lett. 81, 3768 (2002)

    Article  ADS  Google Scholar 

  11. Chen, M., Nikles, D.E.J. Appl. Phys. 91, 8477 (2002)

    Article  ADS  Google Scholar 

  12. Brayner, R., Fiévet, F., Coradin, T.: ”The polyol process.” inNanomaterials: A Danger or a Promise? p 1. Springer, London (2013)

    Book  Google Scholar 

  13. Chinnasamy, C.N., Jeyadevan, B., Shinoda, K., Tohji, K.J. Appl. Phys. 93, 7583 (2003)

    Article  ADS  Google Scholar 

  14. Sehdev, N., Medwal, R., Annapoorni, S.J. Appl. Phys. 110, 033901 (2011)

    Article  ADS  Google Scholar 

  15. Tzitzios, V., Niarchos, D., Margariti, G., Fidler, J., Petridis, D.Nanotechnol. 16, 287 (2005)

    Article  ADS  Google Scholar 

  16. Lee, D.C., Mikulec, F.V., Pelaez, J.M., Koo, B., Korgel, B.A.J. Phys. Chem. B. 110, 11160 (2006)

    Article  Google Scholar 

  17. Elkins, K.E., Vedantam, T.S., Liu, J.P., Zeng, H., Sun, S., Ding, Y., Wang, Z.L.Nano. Lett. 3, 1647 (2003)

    Article  ADS  Google Scholar 

  18. Mourdikoudis, S., Simeonidis, K., Gloystein, K., Angelakeris, M., Dendrinou-Samara, C., Tsiaoussis, I., Kalogirou, O.J. Magn. Magn. Mater. 321, 3120 (2009)

    Article  ADS  Google Scholar 

  19. Joseyphus, R. J., Matsumoto, T., Takahashi, H., Kodama, D., Tohji, K., Jeyadevan, B.J. Solid State Chem. 180, 3008 (2007)

    Article  ADS  Google Scholar 

  20. Xiao, Q.F., Brück, E., Zhang, Z.D., de Boer, F.R., Buschow, K.H.J.J. Alloys Compd. 336, 41 (2002)

    Article  Google Scholar 

  21. Chen, S.C., Kuo, P.C., Kuo, S.T., Sun, A.C., Lie, C.T., Chou, C.Y.Mater. Sci. Eng. B 98, 244 (2003)

    Article  Google Scholar 

  22. Pilkington, T.C., Artley, J.L., Wooten, F. T.J. Appl. Phys. 35, 3493 (1964)

    Article  ADS  Google Scholar 

  23. Bolzoni, F., Leccabue, F., Panizzieri, R., Pareti, L.IEEE Trans. Magn. 20, 1625 (1984)

    Article  ADS  Google Scholar 

  24. Hopkinson, J.: Proc. R. Soc. London 48,1 (1890)

  25. Sun, X., Jia, Z.Y., Huang, Y.H., Harrell, J.W., Nikles, D.E.J. Appl. Phys. 95, 6747 (2004)

    Article  ADS  Google Scholar 

  26. Zeng, H., Li, J., Liu, J.P., Wang, Z.L., Sun, S.Nature 420, 395 (2002)

    Article  ADS  Google Scholar 

  27. Xiao, Q.I., Thang, P.D., Brück, E., de Boer, F.R., Buschow, K.H.J.Appl. Phys. Lett. 78, 3672 (2001)

    Article  ADS  Google Scholar 

  28. Leslie-Pelecky, D.L., Zhang, X.Q., Rieke, R.D.J. Appl. Phys. 79, 5312 (1996)

    Article  ADS  Google Scholar 

  29. Fearon, M., Chantrell, R.W., Wohlfarth, E.P.J. Magn. Magn. Mater. 86, 197 (1990)

    Article  ADS  Google Scholar 

  30. Bedanta, S., Kleemann, W.J. Phys. D: Appl. Phys. 42, 013001 (2009)

    Article  ADS  Google Scholar 

  31. García-Otero, J., Porto, M., Rivas, J.J. Appl. Phys. 87, 7376 (2000)

    Article  ADS  Google Scholar 

  32. Joseyphus, R.J., Narayanasamy, A., Prabhu D., Varga, L.K., Jeyadevan, B., Chinnasamy, C.N., Tohji, K., Ponpandian, N.Phys. stat. sol. C 1, 3489 (2004)

    Article  Google Scholar 

  33. Zhang, J., Zhang, S., Zhang, H., Shen, B.J. Appl. Phys. 89, 5601 (2001)

    Article  ADS  Google Scholar 

  34. Buschow, K.H.J.: Magnetism and Processing of Permanent Magnet Materials, p 504. Elsevier, Amsterdam (1997)

    Google Scholar 

  35. Bercoff, P.G., Bertorello, H.R.J. Magn. Magn. Mater. 187, 169 (1998)

    Article  ADS  Google Scholar 

  36. Chiriac, H., Marinescu, M., Tiberto, P., Vinai, F.Mater. Sci. Eng. A 304-306, 957 (2001)

    Article  Google Scholar 

  37. Yan, A., Bollero, A., Gutfleisch, O., Müller, K.H.J. Appl. Phys. 91, 2192 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Science and Technology (DST), Govt. of India for financial assistance through the FIST program (SR/FST/PSI-117/2007) and FAST track project (SR/FTP/ETA-11/2008). The authors also acknowledge Dr. S. Amirthapandian and the UGC-DAE-CSR facilities sanctioned to Kalpakkam node for the TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Justin Joseyphus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karipoth, P., Joseyphus, R.J. Evolution of High Coercivity in CoPt Nanoparticles Through Nitrogen Assisted Annealing. J Supercond Nov Magn 27, 2123–2130 (2014). https://doi.org/10.1007/s10948-014-2564-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2564-6

Keywords

Navigation