Advertisement

Trapped Flux Dependence of Bulk High-Temperature Superconductors Between 77 and 30 K under a Limited Excitation Field

  • Z. DengEmail author
  • M. Miki
  • B. Felder
  • K. Tsuzuki
  • K. Xu
  • N. Shinohara
  • M. Izumi
Original Paper

Abstract

The trapped-flux dependence of bulk high-temperature superconductors between two typical working temperatures of 77 and 30 K was investigated by a field-cooling magnetization (FCM) method under a limited excitation field of 5 T to approach actual application conditions. An exponential trapped-flux dependence between the two temperatures was obtained by fitting the experimental data. Its effectiveness was checked from the theoretical temperature relationship of the critical current density and trapped-field data in the literature. It was found that the achievable trapped flux at 30 K is closely dependent on the excitation field. The bulk samples with moderate performance around the trapped-field range of 1.0–1.5 T at 77 K can be efficiently activated to reach a trapped field over 4.6 T at 30 K. Bulk samples with better performance at 77 K will get saturation and cannot be fully excited by the 5 T excitation field. The presented results are useful for the appropriate estimation of trapped-flux performance from 77 to 30 K and may support some basic references for the applications of bulk HTS magnets.

Keywords

High-temperature superconductors Trapped magnetic flux Field-cooling magnetization Working temperature Excitation magnetic field 

Notes

Acknowledgements

The authors are grateful to Adelwitz Technologiezentrum GmbH (ATZ) in Germany for providing the bulk HTS samples. This work was partially supported by the Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows (P09305), the Grant-in-Aid for Scientific Research (KAKENHI, 2109305 and 21360425) and the basic applied research plan of Yunnan Province (2012FD051).

References

  1. 1.
    Nariki, S., Sakai, N., Murakami, M.: Supercond. Sci. Technol. 18, S126 (2005) CrossRefADSGoogle Scholar
  2. 2.
    Gruss, S., Fuchs, G., Krabbes, G., et al.: Appl. Phys. Lett. 79, 3131 (2001) CrossRefADSGoogle Scholar
  3. 3.
    Tomita, M., Murakami, M.: Nature 421, 517 (2003) CrossRefADSGoogle Scholar
  4. 4.
    Gamble, B.B., Kalsi, S., Snitchler, G., Madura, D., Howard, R.: In: IEEE Power Engineering Society Summer Meeting, pp. 270–274 (2002) CrossRefGoogle Scholar
  5. 5.
    Snitchler, G., Gamble, B., Kalsi, S.: IEEE Trans. Appl. Supercond. 15, 2206 (2005) CrossRefGoogle Scholar
  6. 6.
    Nick, W., Frank, M., Klaus, G., Frauenhofer, J., Neumuller, H.-W.: IEEE Trans. Appl. Supercond. 17, 2030 (2007) CrossRefADSGoogle Scholar
  7. 7.
    Sivasubramaniam, K., et al.: IEEE Trans. Appl. Supercond. 19, 1656 (2009) CrossRefADSGoogle Scholar
  8. 8.
    Kwon, Y.K., et al.: Physica C 468, 2081 (2008) CrossRefADSGoogle Scholar
  9. 9.
    Miki, M., et al.: Supercond. Sci. Technol. 23, 124001 (2010) CrossRefADSGoogle Scholar
  10. 10.
    Felder, B., et al.: IEEE Trans. Appl. Supercond. 21, 2213 (2011) CrossRefADSGoogle Scholar
  11. 11.
    International Electrotechnical Commission (IEC): IEC 61788-9 (2005) Google Scholar
  12. 12.
    Matsushita, T.: Flux Pinning in Superconductors. Springer, Berlin (2007) Google Scholar
  13. 13.
    Kim, Y., Hempstead, C., Strnad, A.: Rev. Mod. Phys. 36, 43 (1964) CrossRefADSGoogle Scholar
  14. 14.
    Nariki, S., Fujikura, M., Sakai, N., Hirabayashi, I., Murakami, M.: Physica C 426(431), 654 (2005) CrossRefADSGoogle Scholar
  15. 15.
    Matsui, M., Miyamoto, T., Nariki, S., Sakai, N., Murakami, M.: Physica C 357– 360, 694 (2001) CrossRefGoogle Scholar
  16. 16.
    Fuchs, G., Krabbes, G., Schatzle, P., Stoye, P., Staiger, T., Muller, K.-H.: Physica C 268, 115 (1996) CrossRefADSGoogle Scholar
  17. 17.
    Fuchs, G., et al.: J. Low Temp. Phys. 133, 159 (2003) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Z. Deng
    • 1
    • 2
    Email author
  • M. Miki
    • 1
  • B. Felder
    • 1
  • K. Tsuzuki
    • 1
  • K. Xu
    • 1
  • N. Shinohara
    • 1
  • M. Izumi
    • 1
  1. 1.Laboratory of Applied Physics, Department of Marine Electronics and Mechanical EngineeringTokyo University of Marine Science and TechnologyTokyoJapan
  2. 2.Applied Superconductivity Laboratory, State Key Laboratory of Traction PowerSouthwest Jiaotong UniversityChengduP.R. China

Personalised recommendations