Skip to main content
Log in

Physical Properties of Sn1−x Fe x O2 Powders Using Solid State Reaction

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Iron-doped SnO2 diluted magnetic semiconducting powders (Sn1−x Fe x O2, x=0.00, 0.03, 0.05, 0.07, 0.10, and 0.15) were synthesized by a simple solid state reaction followed by vacuum annealing and studied the effect of Fe dopant concentrations on structural, optical, and magnetic properties of the synthesized samples. From the X-ray diffraction, it was confirmed that the samples prepared at lower dopant concentrations were tetragonal in structure whereas the samples prepared at higher dopant concentration exhibited orthorhombic SnO and Fe2O3 phases along with tetragonal SnO2 structure. FT-IR spectrum has been used to confirm the formation of Sn–O bond. The optical band gap of the Sn1−x Fe x O2 powders was increased from 3.6 eV to 3.7 eV with increase of dopant concentration. Raman spectroscopy measurement revealed that the broadening of the most intense Raman peak observed at 630 cm−1 with Fe doping, conforming that the Fe ions are substituted at the Sn sites in the SnO2 lattice. Vibrating sample magnetometer measurements confirmed that the Sn1−x Fe x O2 powders were ferromagnetic at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dietl, T., Ohno, H., Mastukura, F., Cibert, J., Ferrand, D.: Science 287, 1019–1022 (2000)

    Article  ADS  Google Scholar 

  2. Ando, K., Saito, H., Zayets, V., Debnath, M.C.: J. Phys. Condens. Matter 16, S5541–S5548 (2004)

    Article  ADS  Google Scholar 

  3. Akai, H.: Phys. Rev. Lett. 81, 3002–3005 (1998)

    Article  ADS  Google Scholar 

  4. Ohno, H.: J. Magn. Magn. Mater. 200, 110–129 (1999)

    Article  ADS  Google Scholar 

  5. Ohno, H.: J. Vac. Sci. Technol., B 18, 2039–2043 (2000)

    Article  Google Scholar 

  6. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Science 294, 1488–1495 (2001)

    Article  ADS  Google Scholar 

  7. Chen, Z.W., Li, H.J., Jiao, Z., Wu, M.H., Shek, C.H., Wu, C.M.L., Lai, J.K.L.: Acta Mater. 57, 5078–5082 (2009)

    Article  Google Scholar 

  8. Mizokawa, T., Nambu, A., Fujimori, T., Fukumura, T., Kawasaki, M.: Phys. Rev. B 65, 0852091 (2002)

    Google Scholar 

  9. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., Koinuma, H.: Science 291, 854–856 (2001)

    Article  ADS  Google Scholar 

  10. Punnoose, A., Seehra, M.S., Park, W.K., Moodera, J.S.: J. Appl. Phys. 93, 7867–7870 (2003)

    Article  ADS  Google Scholar 

  11. Coey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M.: Appl. Phys. Lett. 84, 1332–1334 (2004)

    Article  ADS  Google Scholar 

  12. Fitzgerald, C.B., Venkatesan, M., Dorneles, L.S., Gunning, R., Stamenov, P., Coey, J.M.D., Stampe, P.A., Kennedy, R.J., Moreira, E.C., Sias, U.S.: Phys. Rev. B 74, 115307 (2006)

    Article  ADS  Google Scholar 

  13. Jiang, F.X., Xu, X.H., Zhang, J., Fan, X.C., Wu, H.S., Gehring, G.A.: Appl. Phys. Lett. 96, 052503 (2010)

    Article  ADS  Google Scholar 

  14. Singhal, R.K., Samariya, A., Kumar, S., Sharma, S.C., Xing, Y.T., Deshpande, U.P., Shripathi, T., Saitovitch, E.: Appl. Surf. Sci. 257, 1053–1057 (2010)

    Article  ADS  Google Scholar 

  15. Behan, A.J., Mokhtari, A., Blythe, H.J., Score, D., Xu, X.H., Neal, J.R., Fox, A.M., Gehring, G.A.: Phys. Rev. Lett. 100, 047206 (2008)

    Article  ADS  Google Scholar 

  16. Xu, X.H., Blythe, H.J., Ziese, M., Behan, A.J., Neal, J.R., Mokhtari, A., Ibrahim, R.M., Fox, A.M., Gehring, G.A.: New J. Phys. 8, 135–146 (2006)

    Article  ADS  Google Scholar 

  17. Qin, H., Zhang, Z., Liu, X., Zhang, Y., Hu, J.: J. Magn. Magn. Mater. 322, 1994–1998 (2010)

    Article  ADS  Google Scholar 

  18. Prakash, R., Kumar, S., Ahmed, F., Lee, C.G., Song, J.: Thin Solid Films 519, 8243–8246 (2011)

    Article  ADS  Google Scholar 

  19. Hong, N.H.: J. Magn. Magn. Mater. 303, 338–343 (2006)

    Article  ADS  Google Scholar 

  20. Fitzgerald, C.B., Venkatesan, M., Douvalis, A.P., Huber, S., Coey, J.M.D.: J. Appl. Phys. 95, 7390–7392 (2004)

    Article  ADS  Google Scholar 

  21. Sharma, A., Varshney, M., Kumar, S., Verma, K.D., Kumar, R.: Nanosyst. Nanomater. Nanotechnol. 1, 24–28 (2011)

    Google Scholar 

  22. Sanchez, L.C., Calle, A.M., Arboleda, J.D., Osorio, J., Nomura, K., Barrero, C.A.: Microelectron. J. 39, 1320–1321 (2008)

    Article  Google Scholar 

  23. Torres, C.E.R., Cabrera, A.F., Sanchez, F.H.: Physica B 389, 176–179 (2007)

    Article  ADS  Google Scholar 

  24. Cabrera, A.F., Navarro, A.M.M., Torres, C.E.R., Sanchez, F.H.: Physica B 398, 215–218 (2007)

    Article  ADS  Google Scholar 

  25. Sambasivam, S., Chun Choi, B., Lin, J.G.: J. Solid State Chem. 184, 199–203 (2011)

    Article  ADS  Google Scholar 

  26. Mishra, A.K., Sinha, T.P., Bandyopadhyay, S., Das, D.: Mater. Chem. Phys. 125, 252–256 (2011)

    Article  Google Scholar 

  27. Castro, R.H.R., Pereira, G.J., Gouve, D.: Appl. Surf. Sci. 253, 4581–4585 (2007)

    Article  ADS  Google Scholar 

  28. Mathew, X., Enriquez, J.P., Garcia, C.M., Puente, G.C., Jacome, M.A., Antonio, J.A.T., Hays, J., Punnoose, A.: J. Appl. Phys. 100, 073907 (2006)

    Article  ADS  Google Scholar 

  29. Cullity, B.D.: Elements of X-ray Diffraction, 2nd edn. p. 102. Addison Wesley, Reading (1978)

    Google Scholar 

  30. Lacombe, S., Cardy, H., Soggiu, N., Blanc, S., Jiawan, J.L.H., Soumillion, J.P.: Microporous Mesoporous Mater. 46, 311–325 (2001)

    Article  Google Scholar 

  31. Tauc, J.: Amorphous and Liquid Semiconductors. Plenum Press, New York (1974)

    Book  Google Scholar 

  32. Abdel Hakeem, A.M.: J. Magn. Magn. Mater. 324, 95–99 (2012)

    Article  ADS  Google Scholar 

  33. Hong, N.H., Sakai, J., Huong, N.T., Poirot, N., Ruyter, A.: Phys. Rev. B 72, 045336 (2005)

    Article  ADS  Google Scholar 

  34. Sakuma, J., Nomura, K., Barrero, C., Takeda, M.: Thin Solid Films 515, 8653–8655 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to VIT-SIF for providing XRD, DRS facilities to carry out the present work. The authors also thank the Sophisticated Advanced Instruments Facility (SAIF), IIT Madras, Tamilnadu, India, for providing vibrating sample magnetometer facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kaleemulla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuppan, M., Kaleemulla, S., Madhusudhana Rao, N. et al. Physical Properties of Sn1−x Fe x O2 Powders Using Solid State Reaction. J Supercond Nov Magn 27, 1315–1321 (2014). https://doi.org/10.1007/s10948-013-2457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2457-0

Keywords

Navigation