Journal of Superconductivity and Novel Magnetism

, Volume 27, Issue 4, pp 1009–1013 | Cite as

Excitonic Mechanism of Local Phase Transformations by Optical Pumping

Original Paper


Transformations of cooperative electronic states by impacts of optical pumping and/or electrostatic doping is a new mainstream in physics of correlated systems. Here we present a semi-phenomenological modeling of spatio-temporal effects in a system where the light absorption goes through a channel creating the excitons—intra-molecular ones or bound electron–hole pairs—and finally the condensate of optical excitons feeds and stimulates phase transformations. Interacting with a near-critical order parameter and deformations, the excitons are subject to self-trapping. That locally enhances their density which can surpass a critical value to trigger the phase transformation, even if the mean density is below the required threshold. The model can be used e.g. as a simplified version of optically induced neutral-ionic transitions in organic chain compounds.


Optical pumping Phase transition Exciton Self-trapping 


  1. 1.
    Nasu, K.: Photoinduced Phase Transitions. World Scientific, Singapore (2004) CrossRefGoogle Scholar
  2. 2.
    Brazovskii, S., Kirova, N. (eds.): Electronic States and Phases Induced by Electric or Optical Impacts. Eur. Phys. J. Spec. Top. 222(5) (2013) Google Scholar
  3. 3.
    Luty, T., Lewanowicz, A. (eds.): Proceedings of the 4th International Conference Photoinduced Phase Transitions and Cooperative Phenomena. Acta Phys. Pol. A, 121 (2012) Google Scholar
  4. 4.
    Brazovskii, S., Kirova, N., Monceau, P. (eds.): Proceedings of the International conference on Electronic Crystals (ECRYS-2012). Phys., B Condens. Matter 407(11) (2012) Google Scholar
  5. 5.
    Okamoto, H.: Ultrafast photoinduced phase transitions in one-dimensional organic correlated electron systems. In: Molecular Electronic and Related Materials-Control and Probe with Light, pp. 59–97. Transworld Research Network, Kerala (2010) Google Scholar
  6. 6.
    Miyamoto, T., Uemura, H., Okamoto, H.: J. Phys. Soc. Jpn. 81, 073703 (2012) CrossRefADSGoogle Scholar
  7. 7.
    Nagaosa, N.: Solid State Commun.. 51, 179 (1986) CrossRefADSGoogle Scholar
  8. 8.
    Nagaosa, N.: J. Phys. Soc. Jpn.. 55, 3488 (1986) CrossRefADSGoogle Scholar
  9. 9.
    Rashba, E.I.: Self-trapping of excitons. In: Rashba, E.I., Sturge, M.D. (eds.) Excitons, p. 543. North-Holland, Amsterdam (1982). Google Scholar
  10. 10.
    Rashba, E.I.: Self-trapping of excitons. In: Rashba, E.I., Sturge, M.D. (eds.) Excitons, Selected Chapters, p. 543. North-Holland, Amsterdam (1982) Google Scholar
  11. 11.
    Tohyama, T.: Eur. Phys. J. Spec. Top. 222, 1065 (2013) CrossRefGoogle Scholar
  12. 12.
    Ishihara, S., Ohara, J., Kanamori, Y.: Eur. Phys. J. Spec. Top. 222, 1125 (2013) CrossRefGoogle Scholar
  13. 13.
    Yusupov, R., et al.: Nat. Phys. 6, 681 (2010) CrossRefGoogle Scholar
  14. 14.
    Yusupov, R., et al.: J. Supercond. Nov. Magn. 24, 1191 (2011) CrossRefGoogle Scholar
  15. 15.
    Stojchevska, L., Mertelj, T., Kusar, P., Vaskivskyi, I., Svetin, D., Brazovskii, S., Mihailovic, D.: Science (2013) (under revision) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.LPTMS (CNRS-UMR 8626)Université Paris-sudOrsay cedexFrance
  2. 2.International Institute of PhysicsNatalBrazil
  3. 3.Jozef Stefan InstituteLjubljanaSlovenia
  4. 4.LPS (CNRS-UMR 8502)Université Paris-sudOrsay cedexFrance

Personalised recommendations