Journal of Superconductivity and Novel Magnetism

, Volume 27, Issue 4, pp 1009–1013 | Cite as

Excitonic Mechanism of Local Phase Transformations by Optical Pumping

  • Serguei Brazovskii
  • Natasha Kirova
Original Paper


Transformations of cooperative electronic states by impacts of optical pumping and/or electrostatic doping is a new mainstream in physics of correlated systems. Here we present a semi-phenomenological modeling of spatio-temporal effects in a system where the light absorption goes through a channel creating the excitons—intra-molecular ones or bound electron–hole pairs—and finally the condensate of optical excitons feeds and stimulates phase transformations. Interacting with a near-critical order parameter and deformations, the excitons are subject to self-trapping. That locally enhances their density which can surpass a critical value to trigger the phase transformation, even if the mean density is below the required threshold. The model can be used e.g. as a simplified version of optically induced neutral-ionic transitions in organic chain compounds.


Optical pumping Phase transition Exciton Self-trapping 



The authors are grateful for hospitality of the Graduate School of Frontier Sciences at the University of Tokyo, where this work was initiated. We particularly acknowledge very stimulating input from Prof. H. Okamoto and members of his laboratory, and discussions with Prof. N. Nagaosa.


  1. 1.
    Nasu, K.: Photoinduced Phase Transitions. World Scientific, Singapore (2004) CrossRefGoogle Scholar
  2. 2.
    Brazovskii, S., Kirova, N. (eds.): Electronic States and Phases Induced by Electric or Optical Impacts. Eur. Phys. J. Spec. Top. 222(5) (2013) Google Scholar
  3. 3.
    Luty, T., Lewanowicz, A. (eds.): Proceedings of the 4th International Conference Photoinduced Phase Transitions and Cooperative Phenomena. Acta Phys. Pol. A, 121 (2012) Google Scholar
  4. 4.
    Brazovskii, S., Kirova, N., Monceau, P. (eds.): Proceedings of the International conference on Electronic Crystals (ECRYS-2012). Phys., B Condens. Matter 407(11) (2012) Google Scholar
  5. 5.
    Okamoto, H.: Ultrafast photoinduced phase transitions in one-dimensional organic correlated electron systems. In: Molecular Electronic and Related Materials-Control and Probe with Light, pp. 59–97. Transworld Research Network, Kerala (2010) Google Scholar
  6. 6.
    Miyamoto, T., Uemura, H., Okamoto, H.: J. Phys. Soc. Jpn. 81, 073703 (2012) CrossRefADSGoogle Scholar
  7. 7.
    Nagaosa, N.: Solid State Commun.. 51, 179 (1986) CrossRefADSGoogle Scholar
  8. 8.
    Nagaosa, N.: J. Phys. Soc. Jpn.. 55, 3488 (1986) CrossRefADSGoogle Scholar
  9. 9.
    Rashba, E.I.: Self-trapping of excitons. In: Rashba, E.I., Sturge, M.D. (eds.) Excitons, p. 543. North-Holland, Amsterdam (1982). Google Scholar
  10. 10.
    Rashba, E.I.: Self-trapping of excitons. In: Rashba, E.I., Sturge, M.D. (eds.) Excitons, Selected Chapters, p. 543. North-Holland, Amsterdam (1982) Google Scholar
  11. 11.
    Tohyama, T.: Eur. Phys. J. Spec. Top. 222, 1065 (2013) CrossRefGoogle Scholar
  12. 12.
    Ishihara, S., Ohara, J., Kanamori, Y.: Eur. Phys. J. Spec. Top. 222, 1125 (2013) CrossRefGoogle Scholar
  13. 13.
    Yusupov, R., et al.: Nat. Phys. 6, 681 (2010) CrossRefGoogle Scholar
  14. 14.
    Yusupov, R., et al.: J. Supercond. Nov. Magn. 24, 1191 (2011) CrossRefGoogle Scholar
  15. 15.
    Stojchevska, L., Mertelj, T., Kusar, P., Vaskivskyi, I., Svetin, D., Brazovskii, S., Mihailovic, D.: Science (2013) (under revision) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.LPTMS (CNRS-UMR 8626)Université Paris-sudOrsay cedexFrance
  2. 2.International Institute of PhysicsNatalBrazil
  3. 3.Jozef Stefan InstituteLjubljanaSlovenia
  4. 4.LPS (CNRS-UMR 8502)Université Paris-sudOrsay cedexFrance

Personalised recommendations