Skip to main content
Log in

Statistical Theory of Materials with Nanoscale Phase Separation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Materials with nanoscale phase separation are considered. These materials are formed by a mixture of several phases, so that inside one phase there exist nanosize inclusions of other phases, with random shapes and random spatial locations. A general approach is described for treating statistical properties of such materials with nanoscale phase separation. Averaging over the random phase configurations, it is possible to reduce the problem to the set of homogeneous phase replicas, with additional equations defining the geometric weights of different phases in the mixture. The averaging over phase configurations is mathematically realized as the functional integration over the manifold indicator functions. This procedure leads to the definition of an effective renormalized Hamiltonian taking into account the existence of competing phases. Heterophase systems with mesoscopic phase separation can occur for different substances. The approach is illustrated by the model of a high-temperature superconductor with non-superconducting admixture and by the model of a ferroelectric with paraelectric random inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Phillips, J.C.: Physics of High-T c Superconductors. Academic Press, Boston (1989)

    Google Scholar 

  2. Bianconi, A., Saini, N.L., Rossetti, T., Lanzaras, A., Perali, A., Missori, M.: Stripe structure in the CuO2 plane of perovskite superconductors. Phys. Rev. B 54, 12018–12021 (1996)

    Article  ADS  Google Scholar 

  3. Bianconi, A., Lusignoli, M., Saini, N.L., Bordet, P., Kvick, A., Radaelli, P.G.: Stripe structure of the CuO2 plane in Bi2Sr2CaCu2O8+y by anomalous X-ray diffraction. Phys. Rev. B 54, 4310–4314 (1996)

    Article  ADS  Google Scholar 

  4. Fratini, M., Poccia, N., Ricci, A., Fields, G., Burghammer, M., Aeppli, G., Bianconi, A.: Scale-free structural organization of oxygen interstitials in La2CuO4+y . Nature 466, 841–844 (2010)

    Article  ADS  Google Scholar 

  5. Poccia, N., Fratini, M., Ricci, A., Fields, G., Beard, L., Victorines-Orgeas, A., Bianconi, G., Aeppli, G., Bianconi, A.: Evolution and control of oxygen order in a cuprate superconductor. Nat. Mater. 10, 733–736 (2011)

    Article  ADS  Google Scholar 

  6. Brookeman, J., Rigamonti, A.: Pretransitional clusters and heterophase fluctuations at first-order phase transitions in crystals. Phys. Rev. B 24, 4925–4930 (1981)

    Article  ADS  Google Scholar 

  7. Rigamonti, A.: NMR-NQR studies of structural phase transitions. Adv. Phys. 33, 115–191 (1984)

    Article  ADS  Google Scholar 

  8. Gordon, A., Genossar, J.: Precursor order clusters at ferroelectric phase transitions. Physica B 125, 53–62 (1984)

    Article  Google Scholar 

  9. Gordon, A.: Heterophase fluctuations in ferroelectrics. J. Phys. C 20, 111–114 (1987)

    Article  ADS  Google Scholar 

  10. Yukalov, V.I.: Heterophase fluctuations in ferroelectrics. Ferroelectrics 82, 11–24 (1988)

    Article  Google Scholar 

  11. Gordon, A., Dorfman, S., Fuks, D.: Conspicuous domination of polarization relaxation in kinetics of first-order phase transitions in perovskites. Phys. Rev. B 54, 3055–3057 (1996)

    Article  ADS  Google Scholar 

  12. Gordon, A., Dorfman, S., Fuks, D.: Dynamic criterion in the kinetics of ferroelectric phase transitions. J. Phys. Condens. Matter 8, 385–390 (1996)

    Article  ADS  Google Scholar 

  13. Gordon, A., Dorfman, S., Fuks, D.: Competition between relaxation kinetics and heat transfer in the dynamics of phase transition fronts. J. Phys. IV 7, 53–58 (1997)

    Google Scholar 

  14. Yamada, Y., Iwase, T., Fujishiro, K., Uesu, Y., Yamashita, Y., Tomeno, I., Shimanuke, S.: Relaxor as heterophase fluctuation. Ferroelectrics 240, 363–370 (2000)

    Article  Google Scholar 

  15. Yukalov, V.I.: Phase transitions and heterophase fluctuations. Phys. Rep. 208, 395–492 (1991)

    Article  ADS  Google Scholar 

  16. Yukalov, V.I.: Mesoscopic phase fluctuations: general phenomenon in condensed matter. Int. J. Mod. Phys. B 17, 2333–2358 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  17. Gibbs, J.W.: Collected Works, vol. 1. Longmans, Green, New York (1928)

    MATH  Google Scholar 

  18. Gibbs, J.W.: Collected Works, vol. 2. Longmans, Green, New York (1931)

    MATH  Google Scholar 

  19. Blinc, R., Zeks, B.: Soft Modes in Ferroelectrics and Antiferroelectrics. Elsevier, New York (1974)

    Google Scholar 

  20. Yukalov, V.I., Yukalova, E.P.: Mesoscopic disorder in double-well optical lattices. Laser Phys. 21, 1448–1458 (2011)

    Article  ADS  Google Scholar 

  21. Benedek, G., Müller, K.A. (eds.): Phase Separation in Cuprate Superconductors. World Scientific, Singapore (1992)

    Google Scholar 

  22. Sigmund, E., Müller, K.A. (eds.): Phase Separation in Cuprate Superconductors. Springer, Berlin (1994)

    Google Scholar 

  23. Kivelson, S.A., Bindloss, I.P., Fradkin, E., Oganesyan, V., Tranquada, J.M., Kapitulnik, A., Howald, C.: How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)

    Article  ADS  Google Scholar 

  24. Bednorz, G., Müller, K.A.: Possible high-T c superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189–193 (1986)

    Article  ADS  Google Scholar 

  25. Shumovsky, A.S., Yukalov, V.I.: Microscopic model of a superconductor with normal-state nuclei. Dokl. Phys. 27, 709–711 (1982)

    Google Scholar 

  26. Yukalov, V.I.: On the Model of Heterophase Superconductor. JINR, Dubna (1985)

    Google Scholar 

  27. Gorkov, L.P., Sokol, A.V.: Phase stratification of an electron liquid in the new superconductors. JETP Lett. 46, 420–423 (1987)

    ADS  Google Scholar 

  28. Khait, Y.L.: A new kind of electron-lattice interaction and the kinetics of breaking high-T c and low-T c superconductivity via large thermal energy fluctuations of lattice particles. Z. Phys. B 71, 7–18 (1988)

    Article  ADS  Google Scholar 

  29. Yukalov, V.I.: Heterostructural fluctuations in superconductors. Int. J. Mod. Phys. B 6, 91–107 (1992)

    Article  ADS  Google Scholar 

  30. Coleman, A.J., Yukalova, E.P., Yukalov, V.I.: Superconductors with mesoscopic phase separation. Physica C 243, 76–92 (1995)

    Article  ADS  Google Scholar 

  31. Yukalov, V.I.: Mesoscopic phase separation in anisotropic superconductors. Phys. Rev. B 70, 224516 (2004)

    Article  ADS  Google Scholar 

  32. Ledbetter, H., Lei, M., Kim, S.: Elastic constants, Debye temperatures, and electron–phonon parameters of superconducting cuprates and related oxides. Phase Transit. 23, 61–70 (1990)

    Article  Google Scholar 

  33. Ledbetter, H.: Dependence of T c on Debye temperature Θ D for various cuprates. Physica C 235, 1325–1326 (1994)

    Article  ADS  Google Scholar 

  34. Zhao, G.M., Keller, H., Conder, K.: Unconventional isotope effects in the high-temperature cuprate superconductors. J. Phys. Condens. Matter 13, 569–587 (2001)

    Article  ADS  Google Scholar 

  35. Abd-Shukor, R.: Acoustic Debye temperature and the role of phonons in cuprates and related superconductors. Supercond. Sci. Technol. 15, 435–438 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Yukalov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yukalov, V.I., Yukalova, E.P. Statistical Theory of Materials with Nanoscale Phase Separation. J Supercond Nov Magn 27, 919–924 (2014). https://doi.org/10.1007/s10948-013-2410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2410-2

Keywords

Navigation