Journal of Superconductivity and Novel Magnetism

, Volume 26, Issue 12, pp 3339–3348

Structural, Electronic and Magnetic Properties of Zinc-Blende Ga1−xTMxN (TM = Cr, Mn, Fe, V)

  • F. Dahmane
  • A. Tadjer
  • B. Doumi
  • D. Mesri
  • H. Aourag
Review Paper

Abstract

In this paper, we present a theoretical study of structural, electronic and magnetic properties for zinc-blende Ga1−xTMxN(TM = Cr, Fe, Mn, V) using the full-potential augmented plane wave (FP-APW) method with local-spin density approximation (LSDA). We have analysed the dependence of structural parameters values on the composition x in the range of x=0.25, x=0.50. Also, the role of p–d hybridisation is analysed by partial (PDOS) and total density of states (TDOS). The magnetic moment of Ga1−xTMxN has been studied by increasing the concentration of TM atom. The TM atom is the most important source of the total magnetic moment in these alloys, while the contributions from Ga and N are minor. In addition our results verify the half-metallic ferromagnetic character of TM doped GaN.

Keywords

First-principales calculations Diluted magnetic semiconductor GaN Transition metals Magnetic moment 

References

  1. 1.
    Riane, R.: Solid State Sci. 11, 200–206 (2009) CrossRefADSGoogle Scholar
  2. 2.
    Ruterana, P., Albrecht, M., Neugebauer, J.: Nitride Semiconductors, Handbook on Materials and Devices. WILEY-VCH, Weinheim (2003) CrossRefGoogle Scholar
  3. 3.
    Justo, J.F.: Diam. Relat. Mater. 16, 1429–1432 (2007) CrossRefADSGoogle Scholar
  4. 4.
    González-García, A.: Solid State Commun. 151, 1794–1797 (2011) CrossRefADSGoogle Scholar
  5. 5.
    Bouhafs, B., Litimein, F., Dridi, Z., Ruterana, P.: Phys. Status Solidi 236(1), 61–81 (2003) CrossRefGoogle Scholar
  6. 6.
    Brandt, O., Yang, H., Jenichen, B., Suzuki, Y., Daweritz, L., Ploog, K.H.: Phys. Rev. B 52, R2253 (1995) CrossRefADSGoogle Scholar
  7. 7.
    Okumura, H., Hamaguchi, H., Koizumi, T., Balakrishnan, K., Ishida, Y., Arita, M.: J. Cryst. Growth 189, 390 (1998) CrossRefADSGoogle Scholar
  8. 8.
    Jain, S.C., Willander, M., Narayan, J., Van Overstraeten, R.: J. Appl. Phys. 87, 965 (2000) CrossRefADSGoogle Scholar
  9. 9.
    Toth, L.E.: Transition Metal Carbides and Nitrides. Academic Press, New York (1971) Google Scholar
  10. 10.
    Sedmidubsk´y, D.: J. Alloys Compd. 452, 105–109 (2008) CrossRefGoogle Scholar
  11. 11.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvanicka, D., Luitz, J.: WIEN2K, an Augmented Plane Wave+Local Orbital Program for Calculating Crystal Properties. Vienna University of Technology, Vienna (2009) Google Scholar
  12. 12.
    Murnaghan, F.D.: Proc. Natl. Acad. Sci. USA 30, 244 (1994) MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Caetano, C., Marques, M., Ferreira, L.G., Teles, L.K.: Appl. Phys. Lett. 94, 241914 (2009) CrossRefADSGoogle Scholar
  14. 14.
    Cui, X.Y., Delley, B., Freeman, A.J., Stampfl, C.: Phys. Rev. Lett. 97, 016402 (2006) CrossRefADSGoogle Scholar
  15. 15.
    Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., Katsumoto, S., Iye, Y.: Appl. Phys. Lett. 69, 363 (1996) CrossRefADSGoogle Scholar
  16. 16.
    Boukra, A., Zaoui, A., Ferhat, M.: J. Appl. Phys. 108, 123904 (2010) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • F. Dahmane
    • 1
  • A. Tadjer
    • 1
  • B. Doumi
    • 1
  • D. Mesri
    • 1
  • H. Aourag
    • 2
  1. 1.Modelling and Simulation in Materials Science Laboratory, Physics DepartmentUniversity of Sidi Bel-AbbesSidi Bel-AbbesAlgeria
  2. 2.Laboratoire d’Etude et Prédiction de Matériaux, URMER, Département de Physique, Faculté des SciencesUniversité A. BelkaidTlemcenAlgeria

Personalised recommendations