Skip to main content
Log in

Effect of Ultrafast Thermal Quenching on the Transport and Magnetotransport Properties of Nd0.67Sr0.33MnO3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We report on the results of ultrafast quenching of Nd1−x Sr x MnO3 (x=0.33) from 1200 °C down to −196 °C in a fraction of a second, at ambient pressure. Transport measurements showed a 27 K shift in the metal-insulator transition (MIT) temperature of the quenched sample compared to the as-grown sample. We found that ultrafast quenching significantly widens the temperature range of the magnetoresistance (MR) from few degrees to over 200 K. These changes are attributed to induced stress and change in grain size, which X-Ray analysis and SEM measurement have confirmed. X-Ray measurements confirms the presence of single phase in both the slowly-cooled and ultrafast-cooled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tokura, Y., Nagaosa, N.: Science 462, 288 (2000)

    Google Scholar 

  2. Jonker, G.H., Van Santen, J.H.: Physica 16, 337 (1950)

    Article  ADS  Google Scholar 

  3. De Gennes, P.G.: Phys. Rev. 118, 141 (1960)

    Article  ADS  Google Scholar 

  4. Goodenough, J.B.: Prog. Solid State Chem. 5, 145 (1972)

    Article  ADS  Google Scholar 

  5. Salamon, M.B., Jaime, M.: Rev. Mod. Phys. 73, 583 (2001)

    Article  ADS  Google Scholar 

  6. Thakare, V., Xing, G., Peng, H., Rana, A., Game, O., Kumar, P.A., Banpurkar, A., Kolekar, Y., Ghosh, K., Wu, T., Sarma, D.D., Ogale, S.B.: Appl. Phys. Lett. 100, 172412 (2012)

    Article  ADS  Google Scholar 

  7. Rajeswari, M., Chen, C.H., Goyal, A., Kwon, C., Robson, M.C., Ramesh, R., Venkatesan, T., Lakeou, S.: Appl. Phys. Lett. 68, 3555 (1996)

    Article  ADS  Google Scholar 

  8. Wang, H., Zhang, X., Hundley, M.F., Thompson, J.D., Gibbons, B.J., Lin, Y., Arendt, P.N., Foltyn, S.R., Jia, Q.X., MacManus-Driscoll, J.L.: Appl. Phys. Lett. 84, 1147 (2004)

    Article  ADS  Google Scholar 

  9. Pradhan, A.K., Bah, R., Konda, R.B., Mundle, R., Mustafa, H., Bamiduro, O., Rakhimov, R.R.: J. Appl. Phys. 103, 07F704 (2008)

    Google Scholar 

  10. Nemes, N.M., Visani, C., Leon, C., Garcia-Hernandez, M., Simon, F., Fehér, T., te Velthuis, S.G.E., Hoffmann, A., Santamaria, J.: Appl. Phys. Lett. 97, 032501 (2010)

    Article  ADS  Google Scholar 

  11. Kajimoto, R., Yoshizawa, H., Kawano, H., Kuwahara, H., Tokura, Y., Ohoyama, K., Ohashi, M.: Phys. Rev. B 60, 9506 (1999)

    Article  ADS  Google Scholar 

  12. Sun, S., Lin, C., Liao, P., Chou, H.: J. Appl. Phys. 89, 072502 (2006)

    Google Scholar 

  13. Ramirez, A.P.: J. Phys. Condens. Matter 9, 8171 (1997)

    Article  ADS  Google Scholar 

  14. Maignan, A., Damay, F., Barnable, A., Martin, C., Hervien, M., Ravean, B.: Philos. Trans. R. Soc. Lond. A 356, 1653 (1998)

    Google Scholar 

  15. Zdravkov, V.I., Kehrle, J., Obermeier, G., Gsell, S., Schreck, M., Müller, C., Krug von Nidda, H.-A., Lindner, J., Moosburger-Will, J., Nold, E., Morari, R., Ryazanov, V.V., Sidorenko, A.S., Horn, S., Tidecks, R., Tagirov, L.R.: Phys. Rev. B 82, 054517 (2010)

    Article  ADS  Google Scholar 

  16. Kuwahara, H., Tomioka, Y., Asamitsu, A., Moritomo, Y., Tokura, Y.: Science 329, 190 (2010)

    Article  Google Scholar 

  17. Savitha Pillai, S., Rangarajan, G., Raju, N.P., Epstein, A.J., Santhosh, P.N.: J. Phys. Condens. Matter 19, 496221 (2007)

    Article  Google Scholar 

  18. Singh, H.K., Kumar, P., Prasad, R., Singh, M.P., Agarwal, V., Siwach, P.K., Fournier, P.: J. Phys. D, Appl. Phys. 42, 105009 (2009)

    Article  ADS  Google Scholar 

  19. Medvedeva, I.V., Bersenev, Yu.S., Bärner, K., Haupt, L., Mandal, P., Poddar, A.: Physica B 229, 194 (1997)

    Article  ADS  Google Scholar 

  20. Dagotto, E., Hotta, T., Moreo, A.: Phys. Rep. 344, 1 (2001)

    Article  ADS  Google Scholar 

  21. Lai, K., Nakamura, M., Kundhikanjana, W., Kawasaki, M., Tokura, Y., Kelly, M.A., Shen, Z.-X.: Science 329(5988), 190 (2010). And references therein

    Article  ADS  Google Scholar 

  22. Gong, G.Q., Gupta, A., Xiao, G., Lecoeur, P., McGuire, T.R.: Phys. Rev. B 54, R3742 (1996)

    Article  ADS  Google Scholar 

  23. Li, X.W., Gupta, A., Xiao, G., Gong, G.Q.: Appl. Phys. Lett. 71, 1124 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research at KFUPM under grant number JF101014. We would like to thank Professor N. Tabet for facilitating access and use of facilities at the surface science lab. We would like also to thank Dr. N. Maalej and Dr. A. Al-Jalal for their help in getting the GPIB controller and computer station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Mansour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansour, A.I., Ziq, K.H., Salem, A.F. et al. Effect of Ultrafast Thermal Quenching on the Transport and Magnetotransport Properties of Nd0.67Sr0.33MnO3 . J Supercond Nov Magn 27, 183–186 (2014). https://doi.org/10.1007/s10948-013-2236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2236-y

Keywords

Navigation