Skip to main content
Log in

Transport Properties of Topological Insulator-Based Ferromagnet/f-Wave Superconductor Junction

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We investigate effect of magnetically-induced relativistic mass and also anisotropic f-wave pair coupling on the tunneling conductance on the surface of a 3D topological insulator ferromagnet/superconductor junction, which two types of pairing for superconductivity are possible. A topological insulator as a new state of condensed-matter caused by spin–orbit interaction and time-reversal symmetry has a bulk band gap and gapless surface states. We use the BTK formalism to find the charge carriers behavior. Due to two different nature of order parameters of the f-wave superconductivity, the tunneling conductance is found to be linearly dependent on the magnetic gap in terms of f 1 and the exponential for f 2. It is shown that the conversion of the conductance peak from ZBCP to ZBCD occurs in the f 1 case with increasing m, while this is not observed in f 2. Also, we find that the conductance behaves as a unit step function for the superconductor electrostatic potential in f 1, and this should be usable in nanoelectronic switch devices. In addition, we illustrate how the magnetic gap affects the transmission coefficient in quite different behaviors for order parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kane, C.L., Mele, E.J.: Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  2. Kane, C.L., Mele, E.J.: Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  3. Fu, L., Kane, C.L.: Phys. Rev. B 76, 045302 (2007)

    Article  ADS  Google Scholar 

  4. Moore, J.E., Balents, L.: Phys. Rev. B 75, 121306(R) (2007)

    Article  ADS  Google Scholar 

  5. Roy, R.: Phys. Rev. B 79, 195322 (2009)

    Article  ADS  Google Scholar 

  6. Bernevig, B.A., Hughes, T.A., Zhang, S.C.: Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  7. Konig, M., Wiedmann, S., et al.: Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  8. Hsieh, D., et al.: Nature 452, 970 (2008)

    Article  ADS  Google Scholar 

  9. Xia, Y., et al.: Nat. Phys. 5, 398 (2009)

    Article  Google Scholar 

  10. Zhang, H., et al.: Nat. Phys. 5, 438 (2009)

    Article  Google Scholar 

  11. Jin, H., et al.: Phys. Rev. B 83, 041202 (2011).

    Article  ADS  Google Scholar 

  12. Mondal, S., et al.: Phys. Rev. Lett. 104, 046403 (2010)

    Article  ADS  Google Scholar 

  13. Linder, J., et al.: Phys. Rev. Lett. 104, 067001 (2010)

    Article  ADS  Google Scholar 

  14. Yokoyama, T., et al.: Phys. Rev. B 81, 121401 (2010).

    Article  ADS  Google Scholar 

  15. Soodchomshom, B.: Phys. Lett. A 374, 2894 (2010)

    Article  ADS  Google Scholar 

  16. Majorana, E.: Nuovo Cimento 17, 171 (1937)

    Article  Google Scholar 

  17. Fu, L., Cane, C.L.: Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  18. Bhattacharjee, S., Sengupta, K.: Phys. Rev. Lett. 97, 217001 (2006)

    Article  ADS  Google Scholar 

  19. Linder, J., Sudbo, A.: Phys. Rev. B 77, 064507 (2008)

    Article  ADS  Google Scholar 

  20. Hsu, Y.F., Guo, G.Y.: Phys. Rev. B 81, 045412 (2010)

    Article  ADS  Google Scholar 

  21. Zou, J., Jin, G.: Europhys. Lett. 87, 27008 (2009)

    Article  ADS  Google Scholar 

  22. Tanaka, Y., et al.: Phys. Rev. Lett. 103, 107002 (2009)

    Article  ADS  Google Scholar 

  23. Linder, J., et al.: Phys. Rev. B 81, 184525 (2010)

    Article  ADS  Google Scholar 

  24. Beenakker, C.W.J.: Phys. Rev. Lett. 97, 067007 (2006)

    Article  ADS  Google Scholar 

  25. Soodchomshom, B.: Phys. Lett. A 374, 3561 (2010)

    Article  ADS  Google Scholar 

  26. Graf, M.J., Yip, S.K., Sauls, J.A.: Phys. Rev. B 62, 14393 (2000)

    Article  ADS  Google Scholar 

  27. Machida, K., Nishira, T., Ohmi, T.: J. Phys. Soc. Jpn. 68, 3364 (1999)

    Article  ADS  Google Scholar 

  28. Lussier, B., Ellman, B., Taillefer, L.: Phys. Rev. B 53, 5145 (1996)

    Article  ADS  Google Scholar 

  29. Blonder, G.E., Tinkham, M., Klapwijk, T.M.: Phys. Rev. B 25, 4515 (1982)

    Article  ADS  Google Scholar 

  30. Mazin, I.I., Johannes, M.D.: Nat. Phys. 1, 91 (2005)

    Article  Google Scholar 

  31. Suwanvarangkoon, A.: Physica E 43, 1867 (2011)

    Article  ADS  Google Scholar 

  32. Goudarzi, H., Khezerlou, M.: Physica E 44, 2082 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Goudarzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goudarzi, H., Khezerlou, M. & Alilou, J. Transport Properties of Topological Insulator-Based Ferromagnet/f-Wave Superconductor Junction. J Supercond Nov Magn 26, 3355–3362 (2013). https://doi.org/10.1007/s10948-013-2198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2198-0

Keywords

Navigation