The Origin of Enhanced Room Temperature Ferromagnetism in Ba Doped BiFeO3


Bi0.74Ba0.30FeO3 and Bi0.74Ba0.30Fe0.95Ti0.05O3 ceramics have been synthesized by a tartaric acid modified sol–gel method. Bi0.74Ba0.3FeO3 has a pseudo-tetragonal structure, while triclinic distortion was induced by the 0.05 Ti substitution from the Rietveld refinements on the X-ray diffraction patterns. The addition of Ti significantly reduced the leakage current. Compared with the remnant magnetization (M r=0.001 emu/g) and coercivity (H c=80 Oe) of pure BiFeO3, the M r and H c of Bi0.74Ba0.3FeO3 are strongly enhanced to 0.16 emu/g and 4.2 kOe, respectively. The Ti substitution has little influence on the magnetic properties. From the temperature-dependent magnetization and differential scanning calorimeter measurements, we conclude that the enhanced ferromagnetism in Ba doped BiFeO3 might be attributed to the trace impurity of BaFe12O19.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Jayakumar, O.D., Achary, S.N., Girija, K.G., Tyagi, A.K., Sudakar, C., Lawes, G., Naik, R., Nisar, J., Peng, X., Ahuja, R.: Appl. Phys. Lett. 96, 032903 (2010)

    Article  ADS  Google Scholar 

  2. 2.

    Jo, S.H., Lee, S.G., Lee, S.H.: Mater. Res. Bull. 47, 409 (2012)

    Article  Google Scholar 

  3. 3.

    Cheng, Z.X., Li, A.H., Wang, X.L., Dou, S.X., Ozawa, K., Kimura, H., Zhang, S.J., Shrout, T.R.: J. Appl. Phys. 103, 07E507 (2008)

    Google Scholar 

  4. 4.

    Lan, C.Y., Jiang, Y.W., Yang, S.G.: J. Mater. Sci. 46, 734 (2011)

    Article  ADS  Google Scholar 

  5. 5.

    Wu, Y.J., Chen, X.K., Zhang, J., Chen, X.J.: J. Magn. Magn. Mater. 324, 1348 (2012)

    Article  ADS  Google Scholar 

  6. 6.

    Béa, H., Bibes, M., Petit, S., Kreisel, J., Barthélémy, A.: Philos. Mag. Lett. 87, 165 (2007)

    Article  ADS  Google Scholar 

  7. 7.

    Park, T.: Phys. Rev. A, Gen. Phys. 82, 024431 (2010)

    Article  ADS  Google Scholar 

  8. 8.

    Varshney, D., Kumar, A., Verma, K.: J. Alloys Compd. 509, 8421 (2011)

    Article  Google Scholar 

  9. 9.

    Cui, Y.F., Zhao, Y.G., Luo, L.B., Yang, J.J., Chang, H., Zhu, M.H., Xie, D., Ren L, T.: Appl. Phys. Lett. 97, 222904 (2010)

    Article  ADS  Google Scholar 

  10. 10.

    Khomchenko, V.A., Kiselev, D.A., Vieira, J.M., Jian, L., Kholkin, A.L., Lopes, A.M.L, Pogorelov, Y.G., Araujo, J.P., Maglione, M.: J. Appl. Phys. 103, 024105 (2008)

    Article  ADS  Google Scholar 

  11. 11.

    Reetu, Agarwal, A., Sanghi, S., Ashima: J. Appl. Phys. 110, 073909 (2011)

    Article  ADS  Google Scholar 

  12. 12.

    Dasn, R., Mandal, K.: J. Magn. Magn. Mater. 324, 1913 (2012)

    Article  ADS  Google Scholar 

  13. 13.

    Wang, D.H., Goh, W.C., Ning, M., Ong, C.K.: Appl. Phys. Lett. 88, 212907 (2006)

    Article  ADS  Google Scholar 

  14. 14.

    Yang, C., Jiang, J.S., Qian, F.Z., Jiang, D.M., Wang, C.M., Zhang, W.G.: J. Alloys Compd. 507, 29 (2010)

    Article  Google Scholar 

  15. 15.

    Bhattacharjee, S., Senyshyn, A., Krishna, P.S.R., Fuess, H., Pandey, D.: Appl. Phys. Lett. 97, 262506 (2010)

    Article  ADS  Google Scholar 

  16. 16.

    Ghosh, S., Dasgupta, S., Sen, A., Maiti, H.S.: J. Am. Ceram. Soc. 88, 1349 (2005)

    Article  Google Scholar 

  17. 17.

    Ge, J.J., Xue, X.B., Cheng, G.F., Yang, M., You, B., Zhang, W.: J. Magn. Magn. Mater. 324, 200 (2012)

    Article  ADS  Google Scholar 

  18. 18.

    Zhang, X., Sui, Y., Wang, X., Mao, J., Zhu, R., Wang, Y., Wang, Z., Liu, Y., Liu, W.: J. Alloys Compd. 509, 5908 (2011)

    Article  Google Scholar 

  19. 19.

    Palkar, V.R.: Appl. Phys. Lett. 80, 1628 (2002)

    Article  ADS  Google Scholar 

  20. 20.

    Khomchenko, V.A., Kiselev, D.A., Vieira, J.M., Kholkin, A.L., Pogorelov, Y.G., Sa, M.A.: Appl. Phys. Lett. 90, 242901 (2007)

    Article  ADS  Google Scholar 

  21. 21.

    Makhdoom, A.R., Akhtar, M.J., Rafiq, M.A., Hassan, M.M.: Ceram. Int. 38, 3929 (2012)

    Article  Google Scholar 

  22. 22.

    Sosnowska, I., Peterlin-Neumaier, T., Steichele, E.: J. Phys. C, Solid State Phys. 15, 4835 (1982)

    Article  ADS  Google Scholar 

  23. 23.

    Yu, J., Tang, S.L., Zhai, L.: Physica B 404, 4253 (2009)

    Article  ADS  Google Scholar 

  24. 24.

    Chakrabarti, K., Das, K., Sarkar, B., Ghosh, S., De, S.K., Sinha, G., Lahtinen, J.: Appl. Phys. Lett. 101, 042401 (2012)

    Article  ADS  Google Scholar 

  25. 25.

    Rakshit, S.K., Parida, S.C., Dash, S., Singh, Z., Sen, B.K., Venugopal, V.: J. Alloys Compd. 438, 279 (2007)

    Article  Google Scholar 

  26. 26.

    Ren, P., Guanb, J.G., Cheng, X.D.: Mater. Chem. Phys. 98, 90 (2006)

    Article  Google Scholar 

  27. 27.

    Li, Y.B., Yu, J., Li, J.J., Zheng, C.D., Wu, Y.Y., Zhao, Y., Wang, M., Wang, Y.B.: J. Mater. Sci., Mater. Electron. 22, 323 (2011)

    Article  Google Scholar 

  28. 28.

    Sahu, J.R., Rao, C.N.: Solid State Sci. 9, 952 (2007)

    Article  ADS  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (51172044), the National Science Foundation of Jiangsu Province of China (BK2011617), the Fundamental Research Funds for the Central Universities (NS2012110), National Key Projects for Basic Researches of China (2010CB923404), by NCET-09-0296, the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information



Corresponding author

Correspondence to Lirong Luo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luo, L., Luo, W., Yuan, G. et al. The Origin of Enhanced Room Temperature Ferromagnetism in Ba Doped BiFeO3 . J Supercond Nov Magn 26, 3309–3313 (2013).

Download citation


  • Multiferroic
  • BiFeO3
  • Ferromagnetism
  • Impurity