Advertisement

Critical Temperatures of Random Iron–Cobalt Overlayers on the fcc-Cu(001) Substrate

  • Martin Mašín
  • Lars Bergqvist
  • Josef Kudrnovský
  • Miroslav Kotrla
  • Václav Drchal
Original Paper

Abstract

We have theoretically investigated thermodynamic properties of random iron–cobalt monolayer deposited on the fcc(001) face of copper. The effective two-dimensional Heisenberg Hamiltonian was constructed from first principles and used to estimate the Curie temperature. The random-phase approximation as well as Monte Carlo approach are used and critically compared. Calculations indicate a weak maximum of the Curie temperature for Fe-rich composition of the overlayer.

Keywords

Curie temperature Random overlayer Heisenberg Hamiltonian First principles Monte Carlo simulations 

Notes

Acknowledgements

The authors acknowledge the support from the Czech Science Foundation under Contract No. 202/09/0775. L. B. acknowledges the support from the Swedish e-Science Research Centre (SeRC) and Swedish Research Council (VR).

References

  1. 1.
    Turek, I., Kudrnovský, J., Drchal, V., Bruno, P.: Philos. Mag. 86, 1713 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    Pajda, M., Kudrnovský, J., Turek, I., Bruno, P.: Phys. Rev. Lett. 85, 5424 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    Vaz, C.A.F., Bland, J.A.C., Lauhoff, G.: Rep. Prog. Phys. 71, 056501 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    Kudrnovský, J., Máca, F., Turek, I., Redinger, J.: Phys. Rev. B 80, 064405 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    Kudrnovský, J., Turek, I., Drchal, V., Weinberger, P., Christensen, N.E., Bose, S.K.: Phys. Rev. B 46, 4222 (1992) ADSCrossRefGoogle Scholar
  6. 6.
    Turek, I., Drchal, V., Kudrnovský, J., Šob, M., Weinberger, P.: Electronic Structure of Disordered Alloys, Surfaces and Interfaces. Kluwer, Boston (1997) CrossRefGoogle Scholar
  7. 7.
    Liechtenstein, A.I., Katsnelson, M.I., Antropov, V.P., Gubanov, V.A.: J. Magn. Magn. Mater. 67, 65 (1987) ADSCrossRefGoogle Scholar
  8. 8.
    Bruno, P., Kudrnovský, J., Drchal, V., Turek, I.: Phys. Rev. Lett. 76, 4254 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    Uppsala Atomistic Spin Dynamics project. http://www.physics.uu.se/en/page/UppASD
  10. 10.
    Binder, K.: Z. Phys. B, Condens. Matter 43, 119 (1981) ADSCrossRefGoogle Scholar
  11. 11.
    Holtschneider, M., Selke, W., Leidl, R.: Phys. Rev. B 72, 064443 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    Rapini, M., Dias, R.A., Costa, B.V.: Phys. Rev. B 75, 014425 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    Kudrnovský, J., Drchal, V., Bruno, P.: Phys. Rev. B 77, 224422 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    Bergqvist, L., Eriksson, O., Kudrnovský, J., Drchal, V., Bergman, A., Nordström, L., Turek, I.: Phys. Rev. B 72, 195210 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    Ležaić, M., Mavropoulos, Ph., Blügel, S.: Appl. Phys. Lett. 90, 082504 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Martin Mašín
    • 1
  • Lars Bergqvist
    • 2
  • Josef Kudrnovský
    • 1
  • Miroslav Kotrla
    • 1
  • Václav Drchal
    • 1
  1. 1.Institute of PhysicsAcademy of Science of the Czech RepublicPrague 8Czech Republic
  2. 2.Department of Materials Science and EngineeringKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations