Advertisement

Directional Vortex Pinning at Microwave Frequency in YBa2Cu3O7−x Thin Films with BaZrO3 Nanorods

  • N. Pompeo
  • K. Torokhtii
  • A. Augieri
  • G. CelentanoEmail author
  • V. Galluzzi
  • E. Silva
Original Paper

Abstract

We investigate the effect of the anisotropy and of the directional pinning in YBa2Cu3O7−x films grown by pulsed laser ablation from targets containing BaZrO3 at 5 mol%. BaZrO3 inclusions self-assemble to give nanorods oriented along the c-axis, thus giving a preferential direction for vortex pinning. The directionality of vortex response is studied at high ac frequency with the complex microwave response at 48 GHz, as a function of the applied field and of the angle θ between the field and the c-axis. The complex microwave response does not exhibit any angular scaling, suggesting that the structural anisotropy of YBa2Cu3O7−x is supplemented by at least another preferred orientation. The pinning parameter r shows evidence of directional pinning, effective in a wide range of angles around the c-axis (thus ascribed to BZO nanocolumns).

Keywords

Vortex pinning Anisotropy Nanorods BaZrO3 

Notes

Acknowledgements

We thank S. Schweizer for the help in taking data. This work has been partially supported by the FIRB project “SURE:ARTYST” and by EURATOM. N.P. acknowledges support from Regione Lazio.

References

  1. 1.
    Kwok, W.K., Welp, U., Vinokur, V.M., Fleshler, S., Downey, J., Crabtree, G.W.: Phys. Rev. Lett. 67, 390 (1991) ADSCrossRefGoogle Scholar
  2. 2.
    Maiorov, B., Baily, S.A., Zhou, H., Ugurlu, O., Kennison, J.A., Dowden, P.C., Holesinger, T.G., Foltyn, S.R., Civale, L.: Nat. Mater. 8, 398 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    Gutiérrez, J., Llordés, A., Gázquez, J., Gibert, M., Romà, N., Ricart, S., Pomar, A., Sandiumenge, F., Mestres, N., Puig, T., Obradors, X.: Nat. Mater. 6, 367 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    Macmanus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Malorov, B., Hawley, M.E., Maley, M.P., Peterson, D.E.: Nat. Mater. 3, 439 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    Peurla, M., Huhtinen, H., Shakhov, M.A., Traito, K., Stepanov, Y.P., Safonchik, M., Paturi, P., Tse, Y.Y., Palai, R., Laiho, R.: Phys. Rev. B 75, 184524 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    Galluzzi, V., Augieri, A., Ciontea, L., Celentano, G., Fabbri, F., Gambardella, U., Mancini, A., Petrisor, T., Pompeo, N., Rufoloni, A., Silva, E., Vannozzi, A.: IEEE Trans. Appl. Supercond. 17, 3628 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    Augieri, A., Galluzzi, V., Celentano, G., Angrisani, A.A., Mancini, A., Rufoloni, A., Vannozzi, A., Silva, E., Pompeo, N., Petrisor, T., Ciontea, L., Gambardella, U., Rubanov, S.: IEEE Trans. Appl. Supercond. 19, 3399 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    Blatter, G., Geshkenbein, V.B., Larkin, A.I.: Phys. Rev. Lett. 68, 876 (1992) ADSCrossRefGoogle Scholar
  9. 9.
    Hao, Z., Clem, J.R.: Phys. Rev. B 46, 5853 (1992) ADSCrossRefGoogle Scholar
  10. 10.
    Pompeo, N., Marcon, R., Silva, E.: J. Supercond. Nov. Magn. 20, 71 (2007) CrossRefGoogle Scholar
  11. 11.
    Pompeo, N., Muzzi, L., Galluzzi, V., Marcon, R., Silva, E.: Supercond. Sci. Technol. 20, 1002 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    Pompeo, N., Rogai, R., Silva, E., Augieri, A., Galluzzi, V., Celentano, G.: Appl. Phys. Lett. 91, 182507 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    Pompeo, N., Rogai, R., Augieri, A., Galluzzi, V., Celentano, G., Silva, E.: J. Appl. Phys. 105, 013927 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    Augieri, A., Celentano, G., Galluzzi, V., Mancini, A., Rufoloni, A., Vannozzi, A., Angrisani Armenio, A., Petrisor, T., Ciontea, L., Rubanov, S., Silva, E., Pompeo, N.: J. Appl. Phys. 108, 063906 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    Silva, E., Sarti, S., Giura, M., Fastampa, R., Marcon, R.: Phys. Rev. B 55, 11115 (1997) ADSCrossRefGoogle Scholar
  16. 16.
    Tinkham, M.: Introduction to Superconductivity, 2nd edn. Dover, New York (2004) Google Scholar
  17. 17.
    Gittleman, J., Rosenblum, B.: Phys. Rev. Lett. 16, 734 (1966) ADSCrossRefGoogle Scholar
  18. 18.
    Hao, Z., Hu, C.-R., Ting, C.-S.: Phys. Rev. B 51, 9387 (1995) ADSCrossRefGoogle Scholar
  19. 19.
    Hao, Z., Hu, C.-R., Ting, C.-S.: Phys. Rev. B 52, R13138 (1995) ADSCrossRefGoogle Scholar
  20. 20.
    Pompeo, N.: (2012). arXiv:1211.3355 [cond-mat.supr-con]
  21. 21.
    Pompeo, N.: (2012). arXiv:1211.3731 [cond-mat.supr-con]
  22. 22.
    Maeda, A., Tsuchiya, Y., Iwaya, K., Kinoshita, K., Hanaguri, T., Kitano, H., Nishizaki, T., Shibata, K., Kobayashi, N., Takeya, J., Nakamura, K., Ando, Y.: Physica C 362, 127 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    Pompeo, N., Silva, E.: Phys. Rev. B 78, 094503 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    Golosovsky, G., Tsindlekht, M., Davidov, D.: Supercond. Sci. Technol. 9, 1 (1996), and references therein ADSCrossRefGoogle Scholar
  25. 25.
    Silva, E., Marcon, R., Fastampa, R., Giura, M., Sarti, S., Ghigo, G.: J. Low Temp. Phys. 131, 871 (2003) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • N. Pompeo
    • 1
  • K. Torokhtii
    • 1
  • A. Augieri
    • 2
  • G. Celentano
    • 2
    Email author
  • V. Galluzzi
    • 2
  • E. Silva
    • 1
  1. 1.Dipartimento di Fisica “E. Amaldi” and Unità CNISMUniversità Roma TreRomaItaly
  2. 2.ENEA-FrascatiFrascatiItaly

Personalised recommendations