Skip to main content
Log in

Andreev Current and Subgap Conductance of Spin-Valve SFF Structures

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The Andreev current and the subgap conductance in a superconductor/insulator/ferromagnet (SIF) structure in the presence of a small spin-splitting field show novel interesting features (Ozaeta et al. in Phys. Rev. B 86:060509(R), 2012). For example, the Andreev current at zero temperature can be enhanced by a spin-splitting field h, smaller than the superconducting gap Δ, as has been recently reported by the authors. Also at finite temperatures, the Andreev current has a peak for values of the spin-splitting field close to the superconducting gap, h≈Δ. Finally, the differential subgap conductance at low temperatures shows a peak at the bias voltage eV=h. In this paper, we investigate the Andreev current and the subgap conductance in SFF structures with arbitrary direction of magnetization of the F layers. We show that all the aforementioned features occur now at the value of the “effective field”, which is the field acting on the Cooper pairs in the multi-domain ferromagnetic region, averaged over the decay length of the superconducting condensate into a ferromagnet. We also briefly discuss the heat transport and electron cooling in the considered structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ozaeta, A., Vasenko, A.S., Hekking, F.W.J., Bergeret, F.S.: Phys. Rev. B 86, 060509(R) (2012)

    Article  ADS  Google Scholar 

  2. Golubov, A.A., Kupriyanov, M.Yu., Il’ichev, E.: Rev. Mod. Phys. 76, 411 (2004)

    Article  ADS  Google Scholar 

  3. Buzdin, A.I.: Rev. Mod. Phys. 77, 935 (2005)

    Article  ADS  Google Scholar 

  4. Bergeret, F.S., Volkov, A.F., Efetov, K.B.: Rev. Mod. Phys. 77, 1321 (2005)

    Article  ADS  Google Scholar 

  5. Andreev, A.F.: Zh. Eksp. Teor. Fiz. 46, 1823 (1964); [Sov. Phys. JETP, 19, 1228 (1964)]

    Google Scholar 

  6. Saint-James, D.: J. Phys. (Paris) 25, 899 (1964)

    Article  MATH  Google Scholar 

  7. Pannetier, B., Courtois, H.: J. Low Temp. Phys. 118, 599 (2000)

    Article  ADS  Google Scholar 

  8. Kastalsky, A., Kleinsasser, A.W., Greene, L.H., Bhat, R., Milliken, F.P., Harbison, J.P.: Phys. Rev. Lett. 67, 3026 (1991)

    Article  ADS  Google Scholar 

  9. van Wees, B.J., de Vries, P., Magnée, P., Klapwijk, T.M.: Phys. Rev. Lett. 69, 510 (1992)

    Article  ADS  Google Scholar 

  10. Hekking, F.W.J., Nazarov, Yu.V.: Phys. Rev. Lett. 71, 1625 (1993)

    Article  ADS  Google Scholar 

  11. Hekking, F.W.J., Nazarov, Yu.V.: Phys. Rev. B 49, 6847 (1994)

    Article  ADS  Google Scholar 

  12. de Jong, M.J.M., Beenakker, C.W.J.: Phys. Rev. Lett. 74, 1657 (1995)

    Article  ADS  Google Scholar 

  13. Leadbeater, M., Lambert, C.J., Nagaev, K.E., Raimondi, R., Volkov, A.F.: Phys. Rev. B 59, 12264 (1999)

    Article  ADS  Google Scholar 

  14. Kontos, T., Aprili, M., Lesueur, J., Grison, X., Dumoulin, L.: Phys. Rev. Lett. 93, 137001 (2004)

    Article  ADS  Google Scholar 

  15. Cottet, A.: Phys. Rev. Lett. 107, 177001 (2011)

    Article  ADS  Google Scholar 

  16. Karminskaya, T.Yu., Golubov, A.A., Kupriyanov, M.Yu.: Phys. Rev. B 84, 064531 (2011)

    Article  ADS  Google Scholar 

  17. Bergeret, F.S., Volkov, A.F., Efetov, K.B.: Phys. Rev. Lett. 86, 3140 (2001)

    Article  ADS  Google Scholar 

  18. Usadel, K.D.: Phys. Rev. Lett. 25, 507 (1970)

    Article  ADS  Google Scholar 

  19. Ivanov, D.A., Fominov, Ya.V.: Phys. Rev. B 73, 214524 (2006)

    Article  ADS  Google Scholar 

  20. Arutyunov, K.Yu., Auraneva, H.-P., Vasenko, A.S.: Phys. Rev. B 83, 104509 (2011)

    Article  ADS  Google Scholar 

  21. Bergeret, F.S., Volkov, A.F., Efetov, K.B.: Phys. Rev. B 66, 184403 (2002)

    Article  ADS  Google Scholar 

  22. Kuprianov, M.Yu., Lukichev, V.F.: Zh. Eksp. Teor. Fiz. 94, 139 (1988); [Sov. Phys. JETP, 67, 1163 (1988)]

    Google Scholar 

  23. Bezuglyi, E.V., Vasenko, A.S., Shumeiko, V.S., Wendin, G.: Phys. Rev. B 72, 014501 (2005)

    Article  ADS  Google Scholar 

  24. Bezuglyi, E.V., Vasenko, A.S., Bratus, E.N., Shumeiko, V.S., Wendin, G.: Phys. Rev. B 73, 220506(R) (2006)

    Article  ADS  Google Scholar 

  25. Pekola, J.P., Maisi, V.F., Kafanov, S., Chekurov, N., Kemppinen, A., Pashkin, Yu.A., Saira, O.-P., Mottonen, M., Tsai, J.S.: Phys. Rev. Lett. 105, 026803 (2010)

    Article  ADS  Google Scholar 

  26. Larkin, A.I., Ovchinnikov, Yu.N.: In: Langenberg, D.N., Larkin, A.I. (eds.) Nonequilibrium Superconductivity. Elsevier, Amsterdam (1986)

    Google Scholar 

  27. Belzig, W., Wilhelm, F.K., Bruder, C., Schön, G., Zaikin, A.D.: Superlattices Microstruct. 25, 1251 (1999)

    Article  ADS  Google Scholar 

  28. Volkov, A.F., Zaitsev, A.V., Klapwijk, T.M.: Physica C 210, 21 (1993)

    Article  ADS  Google Scholar 

  29. Vasenko, A.S., Bezuglyi, E.V., Courtois, H., Hekking, F.W.J.: Phys. Rev. B 81, 094513 (2010)

    Article  ADS  Google Scholar 

  30. Bergeret, F.S., Volkov, A.F., Efetov, K.B.: Phys. Rev. Lett. 86, 4096 (2001)

    Article  ADS  Google Scholar 

  31. Ozaeta, A., Vasenko, A.S., Hekking, F.W.J., Bergeret, F.S.: Phys. Rev. B 85, 174518 (2012)

    Article  ADS  Google Scholar 

  32. Demler, E.A., Arnold, G.B., Beasley, M.R.: Phys. Rev. B 55, 15174 (1997)

    Article  ADS  Google Scholar 

  33. Giazotto, F., Heikkilä, T.T., Luukanen, A., Savin, A.M., Pekola, J.P.: Rev. Mod. Phys. 78, 217 (2006)

    Article  ADS  Google Scholar 

  34. Muhonen, J.T., Meschke, M., Pekola, J.P.: Rep. Prog. Phys. 75, 046501 (2012)

    Article  ADS  Google Scholar 

  35. Vasenko, A.S., Hekking, F.W.J.: J. Low Temp. Phys. 154, 221 (2009)

    Article  ADS  Google Scholar 

  36. Rajauria, S., Courtois, H., Pannetier, B.: Phys. Rev. B 80, 214521 (2009)

    Article  ADS  Google Scholar 

  37. Pekola, J.P., Anghel, D.V., Suppula, T.I., Suoknuuti, J.K., Manninen, A.J., Manninen, M.: Appl. Phys. Lett. 76, 2782 (2000)

    Article  ADS  Google Scholar 

  38. Golubev, D., Vasenko, A.: In: Pekola, J., Ruggiero, B., Silvestrini, P. (eds.) International Workshop on Superconducting Nano-Electronics Devices, p. 165. Kluwer Academic, Dordrecht (2002). arXiv:1204.2719

    Chapter  Google Scholar 

  39. Rajauria, S., Gandit, P., Fournier, T., Hekking, F.W.J., Pannetier, B., Courtois, H.: Phys. Rev. Lett. 100, 207002 (2008)

    Article  ADS  Google Scholar 

  40. Giazotto, F., Taddei, F., Fazio, R., Beltram, F.: Appl. Phys. Lett. 80, 3784 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competition under Project FIS2011-28851-C02-02, the Basque Government under UPV/EHU Project IT-366- 07, the “Topological Quantum Phenomena” (No. 22103002) KAKENHI on Innovative Areas, a Grant-in-Aid for Scientific Research (No. 22710096) from MEXT of Japan, and JSPS Institutional Program for Young Researcher Overseas Visits. The work of A.O. was supported by the CSIC and the European Social Fund under JAE-Predoc program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Vasenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasenko, A.S., Ozaeta, A., Kawabata, S. et al. Andreev Current and Subgap Conductance of Spin-Valve SFF Structures. J Supercond Nov Magn 26, 1951–1956 (2013). https://doi.org/10.1007/s10948-012-2044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-2044-9

Keywords

Navigation