Staggered Spin-Orbit Order: A New Paradigm of Broken Symmetry Phase of Matter

  • Tanmoy DasEmail author
Original Paper


We propose a novel spin-orbit density wave order, which can arise in a variety of materials classes. In systems where the noninteracting wavefunctions are defined by an exotic quantum number such as total angular momentum, pseudospin, or helical quantum number owing to spin-orbit coupling of various natures, interaction can induce an emergent spin-orbit density wave even when time-reversal symmetry is intact. This density wave order is different from standard time-reversal breaking spin or orbital density wave. We apply this idea to explain the enigmatic “hidden order” phase in heavy fermion URu2Si2 as well as an unknown gapped quasiparticle state observed in two-dimensional electron gases, such as the surface state of BiAg2.


Emergent phase Spin-orbit order Heavy-fermion Two-dimensional electron gas 



This work was funded by US DOE, BES, and LDRD and benefited from the allocation of supercomputer time at NERSC.


  1. 1.
    Gruner, G.: Density Waves in Solids. Persues Publishing, Cambridge (2000) Google Scholar
  2. 2.
    Bernevig, A., Hughes, T.L., Zhang, S.-C.: Quantum spin Hall effect and topological phase transition in HgTe quantum cells. Science 314, 1757 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    Hsieh, D., Xia, Y., Qian, D., Wray, L., Dil, J.H., Meier, F., Patthey, L., Osterwalder, J., Fedorov, A.V., Lin, H., Bansil, A., Grauer, D., Hor, Y.S., Cava, R.J., Hasan, M.Z.: A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    Palstra, T.T.M., Menovsky, A.A., van den Berg, J., Dirkmaat, A.J., Kes, P.H., Nieuwenhuys, G.J., Mydosh, J.A.: Superconducting and magnetic transitions in the heavy-fermion system URu2Si2. Phys. Rev. Lett. 55, 2727–2730 (1985) ADSCrossRefGoogle Scholar
  5. 5.
    Dresselhaus, G.: Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955) ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Bychkov, Y.A., Rashba, E.I.: Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984) ADSCrossRefGoogle Scholar
  7. 7.
    Fu, L., Kane, C.L., Mele, E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    Das, T.: Interaction induced staggered spin-orbit order in two-dimensional electron gas. Phys. Rev. Lett. 109, 246406 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    Crepaldi, A., Pons, S., Frantzeskakis, E., Kern, K., Grioni, M.: Anisotropic spin gaps in BiAg2−Ag/Si(111). Phys. Rev. B 85, 075411 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    Bentmann, H., Abdelouahed, S., Mulazzi, M., Henk, J., Reinert, F.: Direct observation of interband spin-orbit coupling in a two-dimensional electron system. Phys. Rev. Lett. 108, 196801 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    Mydosh, J.A., Oppeneer, P.M.: Colloquium: Hidden order, superconductivity, and magnetism: The unsolved case of URu2Si2. Rev. Mod. Phys. 83, 1301–1322 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    Das, T.: Hidden topological order in the heavy fermion metal URu2Si2. Sci. Rep. 2, 596 (2012). doi: 10.1038/srep00596 Google Scholar
  13. 13.
    Hassinger, E., Knebel, G., Izawa, K., Lejay, P., Salce, B., Flouquet, J.: Temperature-pressure phase diagram of URu2Si2 from resistivity measurements and ac calorimetry: Hidden order and Fermi-surface nesting. Phys. Rev. B 77, 115117 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    Kim, K.H., Harrison, N., Jaime, M., Boebinger, G.S., Mydosh, J.A.: Magnetic-field-induced quantum critical point and competing order parameters in URu2Si2. Phys. Rev. Lett. 91, 256401 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    Winkler, R.: Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems. Springer Tracts in Modern Physics, vol. 191. Springer, Berlin (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations