Skip to main content
Log in

Observation of Small Exchange Bias in Defect Wüstite (Fe0.93O) Nanoparticles

  • Letter
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Wüstite nanoparticles have been prepared by mechanochemical processing (MCP), using high-purity hematite (α-Fe2O3) and iron (Fe) powders as the raw materials. In order to get a single-phase wüstite, different mole ratios of (Fe/Fe2O3) were milled. X-ray diffraction studies of the as-milled powders show that a single-phase wüstite was formed. Using the formula a=4.334−0.478x, for Fe1−x O, where “a” is the lattice parameter of wüstite, a nonstoichiometric composition of Fe0.93O was estimated for the wüstite single phase. A mean crystallite size of 13±1 nm was calculated for the single phase wüstite, using Scherrer’s formula. The morphology of the powders was also checked by TEM. The room-temperature Mössbauer spectra of the samples supported the presence of Fe3+ in octahedral sites of wüstite phase, which is a sign of its nonstoichiometry. Hysteresis loops of the as-milled powders at 5 K and room temperature have been obtained by SQUID and by VSM systems, respectively. The loops show nonzero coercivity, in contrast to the bulk wüstite. The observed magnetizations can be explained by a model based on the spinel-type defect clusters in nonstoichiometry wüstite. Room temperature magnetic measurements showed that nanosized prepared wüstite ferrimagnetic-like behavior was interpreted according to spinel-like defect clusters. Therefore, small exchange bias effects 20 Oe and 38 Oe were observed in the magnetization curves at room and 5 K temperatures, respectively. According to the Dimitrov model, in the Fe0.93O nonstoichiometry structure, there are 0.712 molecules of FeO and 0.072 molecules of Fe3O4, which the interaction between the antiferromagnetic (FeO) and ferrimagnetic (Fe3O4) phases in the Fe1−x O can be the cause of the observed exchange bias effect in the hysteresis loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Meiklejohn, W.H., Bean, C.P.: Phys. Rev. 102, 1413 (1956)

    Article  ADS  Google Scholar 

  2. Meiklejohn, W.H., Bean, C.P.: Phys. Rev. 105, 904 (1957)

    Article  ADS  Google Scholar 

  3. Nogués, J., Sorta, J., Langlais, V., Skumryev, V., Suriñach, S., Muñoz, J.S., Baró, M.D.: Phys. Rep. 422, 65 (2005)

    Article  ADS  Google Scholar 

  4. Meiklejohn, W.H.: J. Appl. Phys. 29, 454 (1958)

    Article  ADS  Google Scholar 

  5. Cornell, R.M., Schwertman, U.: The Iron Oxides. Wiley–VCH, Weinheim (2003)

    Book  Google Scholar 

  6. Park, J.Ch., Kim, D., Lee, Ch.S., Kim, D.K.: Bull. Korean Chem. Soc. 20, 1005 (1999)

    Google Scholar 

  7. Gheisari, M., Mozaffari, M., Acet, M., Amighian, J.: J. Magn. Magn. Mater. 320, 2618 (2008)

    Article  Google Scholar 

  8. Roth, W.L.: Acta Crystallogr. 13, 140 (1960)

    Article  Google Scholar 

  9. Koch, F., Cohen, J.B.: Acta Crystallogr. B 25, 275 (1969)

    Article  Google Scholar 

  10. Cheetham, A.K., Fender, B.E.F., Taylor, R.I.: J. Phys. C, Solid State Phys. 4, 2160 (1971)

    Article  ADS  Google Scholar 

  11. Huong, C.T., Romanov, A.D., Shaiowich, Y.L.S., Zvinchuk, R.A.: Bull. Univ. Leningr. 4, 144 (1973)

    Google Scholar 

  12. Catlow, C.R.A., Fender, B.E.F.: J. Phys. C, Solid State Phys. 8, 3267 (1975)

    Article  ADS  Google Scholar 

  13. Aderson, B., Sletnes, J.O.: Acta Crystallogr. A 33, 268 (1977)

    Article  ADS  Google Scholar 

  14. Battle, P., Cheetham, K.A.: J. Phys. C, Solid State Phys. 12, 337 (1979)

    Article  ADS  Google Scholar 

  15. Kim, Y.K., Oliveira, M.: J. Appl. Phys. 75, 431 (1994)

    Article  ADS  Google Scholar 

  16. Dimitrov, D.V., Hadjipanayis, G.C., Papaefthymiou, V., Simopoulos, A.: IEEE Trans. Magn. 33, 4363 (1997)

    Article  ADS  Google Scholar 

  17. Dimitrov, D.V., Unruh, K., Hadjipanayis, G.C., Papafthymiou, V., Simopoulos, A.: Phys. Rev. B 59, 14499 (1999)

    Article  ADS  Google Scholar 

  18. Dimitrov, D.V., Unruh, K., Hadjipanayis, G.C., Papafthymiou, V., Simopoulos, A.: J. Appl. Phys. 87, 7022 (2000)

    Article  ADS  Google Scholar 

  19. Stolen, S., Glockner, R., Gronvold, F., Atake, T., Izumisawa, S.: Am. Mineral. 81, 973 (1996)

    Google Scholar 

  20. McCammon, C.A., Liu, L.: Phys. Chem. Miner. 10, 106 (1984)

    Article  ADS  Google Scholar 

  21. Elias, D.J., Linnett, J.W.: Trans. Faraday Soc. 65, 2673 (1969)

    Article  Google Scholar 

  22. Cullity, D.B., Stock, S.R.: Elements of X-Ray Diffraction. Prentice Hall, New Jersey (2001)

    Google Scholar 

  23. Maaz, K., Mumtaz, A., Hasanain, S.K., Ceylan, A.: J. Magn. Magn. Mater. 308, 289–295 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gheisari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gheisari, M., Mozafari, M., Niyaifar, M. et al. Observation of Small Exchange Bias in Defect Wüstite (Fe0.93O) Nanoparticles. J Supercond Nov Magn 26, 237–242 (2013). https://doi.org/10.1007/s10948-012-1821-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1821-9

Keywords

Navigation