Tunable Wave Propagation in Superconducting Microstrip Line Based on Ferroelectric Thin Films

Original Paper
  • 131 Downloads

Abstract

The microwave propagation characteristics in superconducting microstrip line supported by ferroelectric layer are theoretically investigated. The control of propagation constant and attenuation coefficient of the waveguide with biasing electric field is analyzed using the spectral domain method. The dependence of propagation characteristics on thickness of ferroelectric thin film as well as operating frequency for different applied electric fields is studied. The variation of propagation constant with temperature is also investigated. This method of analysis can be easily implemented in the design of tunable microwave devices.

Keywords

Microstrip lines Ferroelectric High-temperature superconducting Spectral domain approach 

References

  1. 1.
    Vendik, O., Gashinova, M., Deleniv, A.: Tech. Phys. Lett. 28, 461 (2002). http://dx.doi.org/10.1134/1.1490960. doi:10.1134/1.1490960 ADSCrossRefGoogle Scholar
  2. 2.
    Mironenko, I., Ivanov, A.: Tech. Phys. Lett. 27, 536 (2001). http://dx.doi.org/10.1134/1.1388934. doi:10.1134/1.1388934 ADSCrossRefGoogle Scholar
  3. 3.
    Lancaster, M.J., Powell, J., Porch, A.: Supercond. Sci. Technol. 11(11), 1323 (1998). http://stacks.iop.org/0953-2048/11/i=11/a=021 ADSCrossRefGoogle Scholar
  4. 4.
    Vendik, O.G., Ter-Martirosyan, L.T., Zubko, S.P.: J. Appl. Phys. 84(2), 993 (1998). doi:10.1063/1.368166. http://link.aip.org/link/?JAP/84/993/1 ADSCrossRefGoogle Scholar
  5. 5.
    Chou, X., Zhai, J., Yao, X.: Appl. Phys. Lett. 91(12), 122908 (2007). http://link.aip.org/link/?APL/91/122908/1. doi:10.1063/1.2784202 ADSCrossRefGoogle Scholar
  6. 6.
    Semenov, A.A., Karmanenko, S.F., Demidov, V.E., Kalinikos, B.A., Srinivasan, G., Slavin, A.N., Mantese, J.V.: Appl. Phys. Lett. 88(3), 033503 (2006). http://link.aip.org/link/?APL/88/033503/1. doi:10.1063/1.2166489 ADSCrossRefGoogle Scholar
  7. 7.
    Gevorgian, S.: Ferroelectrics in Microwave Devices, Circuits and Systems: Physics, Modeling, Fabrication and Measurements. Springer, London (2009) CrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    Kim, Y.T., Kwak, M.H., Ryu, H.C., Moon, S.E., Lee, S.J., Youn, D.H., Lee, S.K., Kang, K.Y., Lee, S.H., Lee, D.K.: Integr. Ferroelectr. 86(1), 117 (2006). http://www.tandfonline.com/doi/abs/10.1080/10584580601085248. doi:10.1080/10584580601085248 CrossRefGoogle Scholar
  12. 12.
    Itoh, T.: Numerical Techniques for Microwave and Millimeter-Wave Passive Structures. Wiley, New York (1989) Google Scholar
  13. 13.
    Mirshekar-Syahkal, D.: Spectral Domain Method for Microwave Integrated Circuits. Wiley, New York (1990) Google Scholar
  14. 14.
    Nguyen, C.: Analysis Methods for RF, Microwave, and Miillimeter—Wave Planar Transmission Line Structures. Wiley, New York (2000) CrossRefGoogle Scholar
  15. 15.
    Conte, S.D., de Boor, C.: Elementary Numerical Analysis. McGraw-Hill, New York (1981) Google Scholar
  16. 16.
    Mathews, J., Fink, K.: Numerical Methods using MATLAB. Prentice Hall, New York (2004) Google Scholar
  17. 17.
    Pond, J., Krowne, C., Carter, W.: IEEE Trans. Microw. Theory Tech. 37(1), 181 (1989). doi:10.1109/22.20037 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Research and Post-graduate Department of PhysicsSt. Thomas CollegePalaiIndia
  2. 2.Research and Development CenterBharathiar UniversityCoimbatoreIndia
  3. 3.Department of PhysicsCentral University of KeralaKasaragodeIndia

Personalised recommendations