Investigation of Phase Formation and Magnetic Properties of Mn Ferrite Nanoparticles Prepared via Low-Power Ultrasonic Assisted Co-precipitation Method

Original Paper


MnFe2O4 nanoparticles were synthesized by low-power ultrasonic assisted co-precipitation at two different aging times. In order to investigate the effect of ultrasonic waves on phase formation and magnetic properties of Mn ferrite nanoparticles, two other samples were synthesized in the same conditions but in the absence of ultrasonic waves. Structural and morphological properties of the nanoparticles were examined by using X-ray diffraction (XRD) and scanning electron microscope (SEM). The presence of ultrasonic waves through the reaction medium led to form a single phase of MnFe2O4 at 15 min aging time, while this time was insufficient to form a single phase in the absence of ultrasonic waves. At 60 min aging time, the crystallinity of the sample synthesized in the presence of ultrasonic waves was greater and its particle size was bigger than those of the sample synthesized in the absence of ultrasonic waves. The observed results were evaluated from physico-chemical point of view. It was concluded that the ultrasonic waves led to a slower nucleation rate. The magnetic properties of the nanoparticles were examined by permeameter and Faraday-balance equipment. The saturation magnetization of the sample prepared in the presence of ultrasonic waves was enhanced and its Curie temperature was reduced.


Mn ferrite Co-precipitation Ultrasonic waves Supersaturation Magnetic properties 


  1. 1.
    Banerjee, R., Katsenovich, Y., Lagos, L., Mclintosh, M., Zhang, X., Li, C.: Curr. Med. Chem. 17, 3120–3141 (2010) CrossRefGoogle Scholar
  2. 2.
    Bergmann, C.P., Andrade, M.J.D.: Nanostructured Materials for Engineering Applications. Springer, Berlin (2011) CrossRefGoogle Scholar
  3. 3.
    Mohapatra, M., Anand, S.: Int. J. Eng. Sci. Technol. 2, 127–146 (2010) Google Scholar
  4. 4.
    Ahmed, M.A., Okasha, N., El-Dek, S.I.: Nanotechnology. 19, 065603 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    Takada, T., Kiyama, M.: In: Proc. Int. Conf., July 1970, Tokyo, pp. 69–71 (1970) Google Scholar
  6. 6.
    Pratapa, Susanti, S.L., Insany, Y.A.S., Alfiati, Z., Hartono, B., Mashuri, Taufiq, A., Fuad, A., Triwikantoro, Baqiya, M.A., Purwaningsih, S., Yahya, E., Darminto: AIP Conf. Proc. 1284, 125–128 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    Wang, H., Xu, X., Zhang, J., Li, C.: Mater. Sci. Technol. 26, 1037–1040 (2010) CrossRefGoogle Scholar
  8. 8.
    Jackson, S.D., Hargreaves, J.S.J.: Metal Oxide Catalysis. Wiley-VCH, Weinheim (2009) Google Scholar
  9. 9.
    Tang, B., Yuan, L., Shi, T., Yu, L., Zhu, Y.: J. Hazard. Mater. 163, 1173–1178 (2009) CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Cao, Ch.: Electrochim. Acta 55, 4694–4699 (2010) CrossRefGoogle Scholar
  11. 11.
    Cains, P.W., Martin, P.D., Price, C.J.: Org. Process Res. Dev. 2(1), 34–48 (1998) CrossRefGoogle Scholar
  12. 12.
    Li, H., Li, H., Guo, Z.C., Liu, Y.: Ultrason. Sonochem. 13, 359–363 (2006) CrossRefGoogle Scholar
  13. 13.
    Guo, Z., Zhang, M., Li, H., Wang, J., Kougoulos, E.: J. Cryst. Growth 273, 555–563 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    Mason, T., Lorimer, J.: Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing. Wiley-VCH, Weinheim (2002) Google Scholar
  15. 15.
    Mohos, F.: Confectionery and Chocolate Engineering: Principles and Applications, pp. 310–326. Wiley, New York (2010) CrossRefGoogle Scholar
  16. 16.
    Couper, J.R., Roy Penney, W., Walas, S.M.: Chemical Process Equipment: Selection and Design 2nd edn. pp. 555–566. Elsevier, Amsterdam (2005) Google Scholar
  17. 17.
    Jolivet, J., Henry, M., Livage, J.: Metal Oxid Chemistry and Synthesis: From Solution to Solid State. Wiley, Chichester (2000) Google Scholar
  18. 18.
    Chen, J.P., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C., Devlin, E., Kostikas, A.: Phys. Rev. B 54, 9288–9296 (1996) ADSCrossRefGoogle Scholar
  19. 19.
    Buschow, K.: Concise encyclopedia of magnetic and superconducting materials. In: Advances in Materials Sciences and Engineering, 2nd edn., pp. 210–215. Elsevier, Amsterdam (2005) Google Scholar
  20. 20.
    Buckley, R., Benito, P.: Solid State Chemistry Research Trends. Nova Science, Publishers, New York (2007) Google Scholar
  21. 21.
    Mouroi, M., McCormick, P.G., Street, R., Amighian, J.: Phys. Rev. B, Condens. Matter 63, 184414 (2001) ADSCrossRefGoogle Scholar
  22. 22.
    Wang, J., Sun, J., Sun, Q., Chen, Q.: Mater. Res. Bull. 38, 1113–1118 (2003) CrossRefGoogle Scholar
  23. 23.
    Hong, R.Y., Pan, T.T., Li, H.Z.: J. Magn. Magn. Mater. 303, 60–68 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    Tang, Z.X., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C.: Phys. Rev. Lett. 67, 3602–3605 (1991) ADSCrossRefGoogle Scholar
  25. 25.
    Tang, Z.X., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C.: J. Colloid Interface Sci. 146, 38–52 (1991) CrossRefGoogle Scholar
  26. 26.
    Wohlfarth, E.P.: Ferromagnetic Materials; A Handbook on the Properties of Magnetically Ordered Substances, pp. 191–211. North-Holland Physics, Amsterdam (1982) Google Scholar
  27. 27.
    van der Zaag, P.J., Noordermeer, A., Johnson, M.T., Bongers, P.F.: Phys. Rev. Lett. 68, 3112 (1992) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Physics, Faculty of scienceUniversity of IsfahanIsfahanIran
  2. 2.Physics DepartmentRazi UniversityKermanshahIran
  3. 3.Islamic Azad University-Najafabad BranchNajafabadIran

Personalised recommendations