Skip to main content
Log in

Magnetic Properties of Diluted Magnetic Nanowire

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A magnetic diluted nanowire with cylindrical structure described by the Ising model is investigated. Using the effective field theory with a probability distribution technique, the influence of the dilution on the phase diagrams, susceptibility and the hysteresis loops are discussed in detail. Novel features are obtained for the thermal variations of longitudinal susceptibility and longitudinal magnetization. We have investigated the magnetic reversal of the system and have found the existence of triple hysteresis loops patterns, affected by the concentration of magnetic atoms, the temperature, and the exchange interaction between the core and the surface shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a
Fig. 2b
Fig. 2c
Fig. 3a
Fig. 3b
Fig. 3c
Fig. 3d
Fig. 4a
Fig. 4b
Fig. 4c
Fig. 4d

Similar content being viewed by others

References

  1. Soundery, N., Zhang, A.Y.: Recent Pat. Biomed. Eng. 1, 34 (2008)

    Article  Google Scholar 

  2. Kodama, R.H.: J. Magn. Magn. Mater. 200, 379 (1999)

    Article  ADS  Google Scholar 

  3. Fert, A., Piraux, L.: J. Magn. Magn. Mater. 200, 338 (1999)

    Article  ADS  Google Scholar 

  4. Maller, J., Zhang, K.Y., Chien, C.L., Eagleton, T.S., Searson, P.C.: Appl. Phys. Lett. 84, 3900 (2004)

    Article  ADS  Google Scholar 

  5. Michael, F., Gonzalez, C., Mujica, V., Marquez, M., Ratner, M.A.: Phys. Rev. B 76, 224409 (2007)

    Article  ADS  Google Scholar 

  6. Kodama, R.H., Berkowitz, A.E.: Phys. Rev. B 59, 6321 (1999)

    Article  ADS  Google Scholar 

  7. Zaim, A., Kerouad, M.: Physica A 389, 3435 (2010)

    Article  ADS  Google Scholar 

  8. Hultgren, A., Tanase, M., Chen, C.S., Reich, D.H.: IEEE Trans. Magn. 40, 2988 (2004)

    Article  ADS  Google Scholar 

  9. Hultgren, A., Tanase, M., Felton, E.J., Bhadriraju, K., Salem, A.K., Chen, C.S., Reich, D.H.: Biotechnol. Prog. 21, 509 (2005)

    Article  Google Scholar 

  10. Restrepo, J., Labaye, Y., Greneche, J.M.: Physica B 354, 221 (2006)

    Article  ADS  Google Scholar 

  11. Leite, V.S., Figueiredo, W.: Physica A 350, 379 (2005)

    Article  ADS  Google Scholar 

  12. Bakuzis, A.F., Morais, P.C.: J. Magn. Magn. Mater. 285, 145 (2005)

    Article  ADS  Google Scholar 

  13. Vasilakaki, M., Trohidou, K.N.: Phys. Rev. B 79, 144402 (2009)

    Article  ADS  Google Scholar 

  14. Kaneyoshi, T.: Phys. Status Solidi (b). Basic Solid State Phys. 248, 250 (2011)

    Article  ADS  Google Scholar 

  15. Kaneyoshi, T.: J. Magn. Magn. Mater. 322, 3014 (2010)

    Article  ADS  Google Scholar 

  16. Kaneyoshi, T.: J. Magn. Magn. Mater. 322, 3410 (2010)

    Article  ADS  Google Scholar 

  17. Kaneyoshi, T.: Solid State Commun. 151, 1528 (2011)

    Article  ADS  Google Scholar 

  18. Kaneyoshi, T.: Physica A 390, 3697 (2011)

    Article  ADS  Google Scholar 

  19. Trohidou, K.N., Vasilakaki, M., Del Bianco, L., Fiorami, D., Testa, A.M.: J. Magn. Magn. Mater. 316, e82 (2007)

    Article  ADS  Google Scholar 

  20. Zaim, A., Kerouad, M., El Amraoui, Y.: J. Magn. Magn. Mater. 321, 1077 (2009)

    Article  ADS  Google Scholar 

  21. Restrepo, J., Labaye, Y., Berger, L., Greneche, J.M.: J. Magn. Magn. Mater. 681, 272 (2004)

    Google Scholar 

  22. Oubelkacem, A., El Aouad, N., Bentaleb, M., Laaboudi, B., Saber, M.: J. Magn. Magn. Mater. 271, 270 (2004)

    Article  ADS  Google Scholar 

  23. Htoutou, K., Oublkacem, A., Ainane, A., Saber, M.: J. Magn. Magn. Mater. 288, 259 (2005)

    Article  ADS  Google Scholar 

  24. Saber, A., Ainane, A., Dujardin, F., Saber, M., Stébé, B.: Physica A 269, 329 (1999)

    Article  ADS  Google Scholar 

  25. Htoutou, K., Ainane, A., Saber, M., de Miguel, J.J.: Physica A 358, 184 (2005)

    Article  ADS  Google Scholar 

  26. Honmura, R., Kaneyoshi, T.: J. Phys. C 12, 3979 (1979)

    Article  ADS  Google Scholar 

  27. Kaneyoshi, T.: Acta Phys. Pol. A 83, 703 (1993)

    Google Scholar 

  28. Keskin, M., Sarli, N., Deviren, B.: J. Solid State Commun. 151, 1025 (2011)

    Article  ADS  Google Scholar 

  29. Zhang, Y., Shi, H., Li, R., Zhang, P.: Phys. Lett. A 375, 1686–1689 (2011)

    Article  ADS  Google Scholar 

  30. Zhang, Y., Shi, E.W., Chen, Z.Z.: Mater. Sci. Semicond. Process. 13, 132 (2010)

    Article  Google Scholar 

  31. Gao, W., Yang, S., Yang, S., Lv, L., Du, Y.: J. Phys. Lett. A 375, 180 (2010)

    Article  ADS  Google Scholar 

  32. Kaneyoshi, T., Tamura, I., Sarmento, E.E.: Phys. Rev. B 28, 6491 (1983)

    Article  ADS  Google Scholar 

  33. Saber, M.: Chin. J. Phys. 35, 577 (1997)

    Google Scholar 

  34. Sá Barreto, F.C., Fittipaldi, I.P., Zeks, B.: Ferroelectrics 39, 1103 (1981)

    Article  Google Scholar 

  35. Kaneyoshi, T., Fittipaldi, I.P., Beyer, H.J.: Phys. Status Solidi (b). Basic Solid State Phys. 102, 39 (1980)

    MathSciNet  Google Scholar 

  36. Kaneyoshi, T., Jascur, M., Fittipaldi, I.P.: J. Phys. Rev. B 48, 250 (1993)

    Article  ADS  Google Scholar 

  37. Kaneyoshi, T., Jascur, M.: J. Phys. Rev. B 46, 3374 (1992)

    Article  ADS  Google Scholar 

  38. Canko, O., Erdinç, A., Taskin, F., Atis, M.: J. Phys. Lett. A 375, 3547 (2011)

    Article  MATH  ADS  Google Scholar 

  39. Canko, O., Erdinç, A., Taskin, F., Yildirim, A.F.: J. Magn. Magn. Mater. 324, 508 (2012)

    Article  ADS  Google Scholar 

  40. Yuksel, Y., Polat, H.: J. Magn. Magn. Mater. 322, 3907 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been initiated with the support of URAC: 08, the project RS:02 (CNRST) and the Swedish Research Links programme dnr-348-2011-7264 and completed during a visit of A.A. and M.S. at the Max Planck Institut für Physik Komplexer Systeme Dresden, Germany. The authors would like to thank all the organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ainane.

Appendix

Appendix

For the nanowire center spin c 1:

(23)

for the spins around the center:

(24)

for spins of type-1 surface shell nanowire:

(25)

for spins of type-2 surface shell nanowire:

(26)

Susceptibility of the nanowire:

$$ \left. \frac{\partial m_{c_{1}}^{z}}{\partial h} \right)_{h=0}=A_{1,1}\left. \frac{\partial m_{c_{1}}^{z}}{\partial h} \right)_{h=0}+A_{1,2}\left. \frac{\partial m_{c_{2}}^{z}}{\partial h} \right)_{h=0}+B_{1} $$
(27)
$$ \left. \frac{\partial m_{c_{2}}^{z}}{\partial h} \right)_{h=0}=A_{2,1}\left. \frac{\partial m_{c_{1}}^{z}}{\partial h} \right)_{h=0}+A_{2,2}\left. \frac{\partial m_{c_{2}}^{z}}{\partial h} \right)_{h=0}+A_{2,3}\left. \frac{\partial m_{s_{1}}^{z}}{\partial h} \right)_{h=0}+A_{2,4}\left. \frac{\partial m_{s_{2}}^{z}}{\partial h} \right)_{h=0}+B_{2} $$
(28)
$$ \left. \frac{\partial m_{s_{1}}^{z}}{\partial h} \right)_{h=0}=A_{3,2}\left. \frac{\partial m_{c_{2}}^{z}}{\partial h} \right)_{h=0}+A_{3,3}\left. \frac{\partial m_{s_{1}}^{z}}{\partial h} \right)_{h=0}+A_{3,4}\left. \frac{\partial m_{s_{2}}^{z}}{\partial h} \right)_{h=0}+B_{3} $$
(29)
$$ \left. \frac{\partial m_{s_{2}}^{z}}{\partial h} \right)_{h=0}=A_{4,2}\left. \frac{\partial m_{c_{2}}^{z}}{\partial h} \right)_{h=0}+A_{4,3}\left. \frac{\partial m_{s_{1}}^{z}}{\partial h} \right)_{h=0}+A_{4,4}\left. \frac{\partial m_{s_{2}}^{z}}{\partial h} \right)_{h=0}+B_{4}. $$
(30)

With N 1=1, N 2=2, N 3=4, and N 4=6 denote respectively the coordination numbers and \(C_{k}^{l}\) are the binomial coefficient \(C_{k}^{l}=\frac{l!}{k!(l-k)!}\).

The elements A i,j and B i are given by:

(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
$$ \frac{\partial f_{z}}{\partial h}\bigg)_{h=0}=\beta \bigl(1-\tanh^{2}(\beta y) \bigr). $$
(47)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouhou, S., Essaoudi, I., Ainane, A. et al. Magnetic Properties of Diluted Magnetic Nanowire. J Supercond Nov Magn 26, 201–211 (2013). https://doi.org/10.1007/s10948-012-1713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1713-z

Keywords

Navigation