Superconductivity in Striped and Multi-Fermi-Surface Hubbard Models: From the Cuprates to the Pnictides

Original Paper


Single- and multiband Hubbard models have been found to describe many of the complex phenomena that are observed in the cuprate and iron-based high-temperature superconductors. Simulations of these models therefore provide an ideal framework to study and understand the superconducting properties of these systems and the mechanisms responsible for them. Here, we review recent dynamic cluster quantum Monte Carlo simulations of these models, which provide an unbiased view of the leading correlations in the system. In particular, we discuss what these simulations tell us about superconductivity in the homogeneous 2D single-orbital Hubbard model, and how charge stripes affect this behavior. We then describe recent simulations of a bilayer Hubbard model, which provides a simple model to study the type and nature of pairing in systems with multiple Fermi surfaces such as the iron-based superconductors.


Superconductivity Cuprates Pnictides 


  1. 1.
    Anderson, P.: Science 235, 1196 (1987) ADSCrossRefGoogle Scholar
  2. 2.
    Bouadim, K., Batrouni, G.G., Hébert, F., Scalettar, R.T.: Phys. Rev. B 77, 144,527 (2008) Google Scholar
  3. 3.
    Bulut, N., Scalapino, D., Scalettar, R.: Phys. Rev. B 45, 5577 (1992) ADSCrossRefGoogle Scholar
  4. 4.
    Dos Santos, R.: Phys. Rev. B 51, 15,540 (1995) CrossRefGoogle Scholar
  5. 5.
    Graser, S., Maier, T., Hirschfeld, P., Scalapino, D.: New J. Phys. 11, 025,016 (2009) CrossRefGoogle Scholar
  6. 6.
    Hettler, M., Tahvildar-Zadeh, A., Jarrell, M., Pruschke, T., Krishnamurthy, H.: Phys. Rev. B 58, R7475 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    Hetzel, R.E., von der Linden, W., Hanke, W.: Phys. Rev. B 50, 4159 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    Jarrell, M., Maier, T., Huscroft, C., Moukouri, S.: Phys. Rev. B 64, 195130 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    Kugel, K.I., Rakhmanov, A.L., Sboychakov, A.O., Poccia, N., Bianconi, A.: Phys. Rev. B 78, 165,124 (2008) Google Scholar
  10. 10.
    Kuroki, K., Onari, S., Arita, R., Usui, H., Tanaka, Y., Kontani, H., Aoki, H.: Phys. Rev. Lett. 101, 087,004 (2008) CrossRefGoogle Scholar
  11. 11.
    Liechtenstein, A.I., Mazin, I.I., Andersen, O.K.: Phys. Rev. Lett. 74, 2303 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    Maier, T., Alvarez, G., Summers, M., Schulthess, T.: Phys. Rev. Lett. 104, 247,001 (2010) CrossRefGoogle Scholar
  13. 13.
    Maier, T., Jarrell, M., Pruschke, T., Hettler, M.: Rev. Mod. Phys. 77, 1027 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    Maier, T., Jarrell, M., Scalapino, D.: Phys. Rev. Lett. 96, 047,005 (2006) Google Scholar
  15. 15.
    Maier, T., Jarrell, M., Scalapino, D.: Phys. Rev. B 74, 094,513 (2006) CrossRefGoogle Scholar
  16. 16.
    Maier, T., Scalapino, D.: 2011, preprint arXiv:1107.0401
  17. 17.
    Scalettar, R., Cannon, J., Scalapino, D., Sugar, R.: Phys. Rev. B 50(18), 13,419 (1994) CrossRefGoogle Scholar
  18. 18.
    Zhang, F., Rice, T.: Phys. Rev. B 37, R3759 (1988) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Computer Science and Mathematics Division and Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations