Skip to main content
Log in

Preparation of Magnetic Cu0.5Mg0.5Fe2O4 Nanoparticles and Kinetics of Thermal Process of Precursor

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Cu0.5Mg0.5Fe2O4 precursor was synthesized by solid-state reaction at low heat using CuSO4⋅5H2O, MgSO4⋅6H2O, FeSO4⋅7H2O, and Na2C2O4 as raw materials. The spinel Cu0.5Mg0.5Fe2O4 was obtained via calcining precursor above 300 °C in air. The precursor and its calcined products were characterized by thermogravimetry and differential scanning calorimetry (TG/DSC), Fourier transform FT-IR, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and vibrating sample magnetometer (VSM). The result showed that Cu0.5Mg0.5Fe2O4 obtained at 600 °C had a saturation magnetization of 36.8 emu g−1. The thermal process of Cu0.5Mg0.5Fe2O4 precursor experienced two steps, which involved the dehydration of the five and a half crystal water molecules at first, and then decomposition of Cu0.5Mg0.5Fe2(C2O4)3 into crystalline Cu0.5Mg0.5Fe2O4 in air. Based on the Kissinger equation, the values of the activation energy associated with the thermal process of the precursor were determined to be 85 and 152 kJ mol−1 for the first and second thermal process steps, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maqsood, A., Faraz, A.: J. Supercond. Nov. Magn. doi:10.1007/s10948-011-1343-x

  2. Msomi, J.Z., Moyo, T., Abdallah, H.M.I.: J. Supercond. Nov. Magn. doi:10.1007/s10948-011-1235-0

  3. Abdallah, H.M.I., Moyo, T., Msomi, J.Z.: J. Supercond. Nov. Magn. 24, 669–673 (2011)

    Article  Google Scholar 

  4. Sun, Z.P., Liu, L., Jia, D.Z., Pan, W.Y.: Sens. Actuators B, Chem. 125, 144–148 (2007)

    Article  Google Scholar 

  5. Li, J.J., Yuan, H.M., Li, G.D., Liu, Y.J., Leng, J.S.: J. Magn. Magn. Mater. 322, 3396–3400 (2010)

    Article  ADS  Google Scholar 

  6. Wu, X.H., Wu, W.W., Zhou, K.W., Cui, X.M., Liao, S.: J. Therm. Anal. Calorim. doi:10.1007/s10973-011-1968-9

  7. Li, F.S., Wang, H.B., Wang, L., Wang, J.B.: J. Magn. Magn. Mater. 309, 295–299 (2007)

    Article  ADS  Google Scholar 

  8. Wu, W.W., Cai, J.C., Wu, X.H., Li, Y.N., Liao, S.: Rare Metals. doi:10.1007/s12598-011-0439-6

  9. Satyanarayana, L., Madhusudan Reddy, K., Manorama, S.V.: Mater. Chem. Phys. 82, 21–26 (2003)

    Article  Google Scholar 

  10. Zhang, K., Holloway, T., Pradhan, A.K.: J. Magn. Magn. Mater. 323, 1616–1622 (2011)

    Article  ADS  Google Scholar 

  11. Wu, W.W., Cai, J.C., Wu, X.H., Liao, S., Huang, A.G.: Powder Technol. 215– 216, 200–205 (2012)

    Google Scholar 

  12. Goya, G.F., Rechenberg, H.R.: Nanostruct. Mater. 10, 1001–1011 (1998)

    Article  Google Scholar 

  13. Jiang, J.Z., Goya, G.F., Rechenberg, H.R.: J. Phys., Condens. Matter 11, 4063–4078 (1999)

    Article  ADS  Google Scholar 

  14. Bomio, M., Lavela, P., Tirado, J.L.: J. Solid State Electrochem. 12, 729–737 (2008)

    Article  Google Scholar 

  15. Pandya, P.B., Joshi, H.H., Kulkarni, R.G.: J. Mater. Sci. Lett. 10, 474–476 (1991)

    Article  Google Scholar 

  16. Tao, S.W., Gao, F., Liu, X.Q., Sørensen, O.T.: Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 77, 172–176 (2000)

    Google Scholar 

  17. Zhang, Y., Stangle, G.C.: J. Mater. Res. 9, 1997–2004 (1994)

    Article  ADS  Google Scholar 

  18. Vanetsev, A.S., Ivanov, V.K., Tret’yakov, Yu.D.: Dokl., Phys. Chem. 387, 332–334 (2002)

    Article  Google Scholar 

  19. Wu, X.H., Zhou, K.W., Wu, W.W., Cui, X.M., Li, Y.N.: J. Therm. Anal. Calorim. doi:10.1007/s10973-011-2104-6

  20. Mathew, T., Shylesh, S., Reddy, S.N., Sebastian, C.P., Date, S.K., Rao, B.S., Kulkarni, S.D.: Catal. Lett. 93, 155–163 (2004)

    Article  Google Scholar 

  21. Birajdar, D.S., Devatwal, U.N., Jadhav, K.M.: J. Mater. Sci. 37, 1443–1448 (2002)

    Article  Google Scholar 

  22. Gabal, M.A., Ahmed, M.A.: J. Mater. Sci. 40, 387–398 (2005)

    Article  ADS  Google Scholar 

  23. Banerjee, M., Verma, N., Prasad, R.: J. Mater. Sci. 42, 1833–1837 (2007)

    Article  ADS  Google Scholar 

  24. Kenfack, F., Langbein, H.: J. Mater. Sci. 41, 3683–3693 (2006)

    Article  ADS  Google Scholar 

  25. Varalaxmi, N., Siva Kumar, K.V.: J. Mater. Sci., Mater. Electron. 22, 555–560 (2011)

    Article  Google Scholar 

  26. Kissinger, H.E.: Anal. Chem. 29, 1702–1706 (1957)

    Article  Google Scholar 

  27. Danvirutai, C., Noisong, P., Youngme, S.: J. Therm. Anal. Calorim. 100, 117–124 (2010)

    Article  Google Scholar 

  28. Boonchom, B., Danvirutai, C.: J. Therm. Anal. Calorim. 98, 771–777 (2009)

    Article  Google Scholar 

  29. Vlaev, L., Nedelchev, N., Gyurova, K., Zagorcheva, M.: J. Anal. Appl. Pyrolysis 81, 253–262 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Nature Science Foundation of China (Grant No. 21161002) and the Guangxi Nature Science Foundation of China (Grant No. 2011GXNSFA018036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Su, P., Wu, W. et al. Preparation of Magnetic Cu0.5Mg0.5Fe2O4 Nanoparticles and Kinetics of Thermal Process of Precursor. J Supercond Nov Magn 25, 1971–1977 (2012). https://doi.org/10.1007/s10948-012-1545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1545-x

Keywords

Navigation