Advertisement

Approaching Large U d High-T c Cuprates from the Covalent Side

  • S. BarišićEmail author
  • O. S. Barišić
Superconductivity

Abstract

Large U d theories of high-T c cuprates often start from the ionic limit in which one charge per CuO2 unit cell is localized on the copper site and involved in AF correlations with neighboring sites. AF correlations are promoted by a relatively small exchange J and the motion of holes by is described by the tJ models with narrow effective bands. However, very small hole doping is sufficient to destabilize the Mott-AF phase and the resulting metallic phase explicitly exhibits comparatively wide covalent bands. After a brief description of the large U d ionic limit, the large U d covalent limit is therefore considered. It is shown that in this limit, the large U d produces a reasonably small effective kinematic interaction between two holes on oxygens. This interaction gives rise to magnetic correlations, similar to those found in the weak-coupling Hubbard theories. The distinct signature of large U d is the broadening of the single (and two) particle properties of the system, which is related to the “mixed valence fluctuations” between Cu and 2O, localized within the CuO2 unit cell. These fluctuations produce a sizeable Landau-like damping of the single (and two) particle propagations, thus competing with the magnetic coherence, characterized by an incommensurate wave-vector. The cuprates appear to fall between these two extreme limits, which might explain in part why they are so difficult to understand.

Keywords

High-Tc cuprates Covalence Mixed valence Magnetism 

Notes

Acknowledgements

One of us (S.B.) wishes to acknowledge life-long discussions and correspondence with Jacques Friedel concerning the physics of low dimensional conductors. This work was supported by the Croatian Government under Projects 119-1191458-0512 and 035-0000000-3187.

References

  1. 1.
    Friedel, J.: J. Phys., Condens. Matter 1, 7757 (1989) ADSCrossRefGoogle Scholar
  2. 2.
    Friedel, J.: Private communication (2011) Google Scholar
  3. 3.
    Kupčić, I., Barišić, S.: Phys. Rev. B 75, 094508 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    Zhang, F.C., Rice, T.M.: Phys. Rev. B 37, 3759 (1988) ADSCrossRefGoogle Scholar
  5. 5.
    Lee, P.A., et al.: Rev. Mod. Phys. 78, 17 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    Plakida, N.: High-temperature Cuprate Superconductors. Springer, Berlin (2010) CrossRefGoogle Scholar
  7. 7.
    Anderson, P.W.: Adv. Phys. 46, 3 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    Emery, V.J.: Phys. Rev. Lett. 58, 2794 (1987) ADSCrossRefGoogle Scholar
  9. 9.
    Lederer, P., Montambaux, G., Poilblanc, D.: J. Phys. 48, 1613 (1987) CrossRefGoogle Scholar
  10. 10.
    Kim, J.H., Levin, K., Auerbach, A.: Phys. Rev. B 39, 11633 (1989) ADSCrossRefGoogle Scholar
  11. 11.
    Geertsma, W.: Physica B 164, 241 (1990). Ph.D. thesis, Univ. of Groningen (1979) ADSCrossRefGoogle Scholar
  12. 12.
    Barišić, S., Barišić, O.S.: arXiv:1110.1947
  13. 13.
    Sunko, D.K.: J. Exp. Theor. Phys. 109, 652 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    Macridin, A., Jarrell, M., Maier, T., Sawatzky, G.A.: Phys. Rev. B 71, 134527 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    Coleman, P.: Phys. Rev. B 29, 3035 (1984) ADSCrossRefGoogle Scholar
  16. 16.
    Gor’kov, L.P., Sokol, A.V.: JETP Lett. 46, 420 (1987) ADSGoogle Scholar
  17. 17.
    Friedel, J., Kohmoto, M.: Eur. Phys. J. B 30, 427 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    Kanamori, J.: Prog. Theor. Phys. 30, 275 (1963) ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Anderson, P.W.: Science 316, 1705 (2007) CrossRefGoogle Scholar
  20. 20.
    Garland, J.W.: Phys. Rev. Lett. 11, 114 (1963) ADSCrossRefGoogle Scholar
  21. 21.
    Schulz, H.J.: Phys. Rev. Lett. 64, 1445 (1990) ADSCrossRefGoogle Scholar
  22. 22.
    Norman, M.R.: High temperature superconductivity—magnetic mechanisms. In: Kronmuller, H., Parkin, S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials, vol. 5 p. 2671. Willey, New York (2007) Google Scholar
  23. 23.
    Sunko, D.K., Barišić, S.: Phys. Rev. B 75, 060506(R) (2007) ADSCrossRefGoogle Scholar
  24. 24.
    Labbé, J., Bok, J.: Europhys Lett. 3, 1225 (1997) ADSCrossRefGoogle Scholar
  25. 25.
    Dzyaloshinshii, I.E., Yakovenko, V.M.: ZhETF 94, 344 (1988) ADSGoogle Scholar
  26. 26.
    Emery, V.J., Bruinsma, R., Barišić, S.: Phys. Rev. Lett. 48, 1039 (1982) ADSCrossRefGoogle Scholar
  27. 27.
    Moriya, T., Ueda, K.: Adv. Phys. 49, 555 (2000) ADSCrossRefGoogle Scholar
  28. 28.
    Kontani, H.: Rep. Prog. Phys. 71, 026501 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    Si, Q., Zha, Y., Levin, K., Lu, J.P.: Phys. Rev. B 47, 9055 (1993) ADSCrossRefGoogle Scholar
  30. 30.
    Kolley, E., et al.: J. Phys. C 10, 657 (1998) Google Scholar
  31. 31.
    Nikšić, H., Tutiš, E., Barišić, S.: Physica C 241, 247 (1995) ADSCrossRefGoogle Scholar
  32. 32.
    Kroha, J., Wölfle, P.: arXiv:cond-mat/0410273v2
  33. 33.
    Zölfl, M.B., Maier, Th., Pruchke, Th., Keller, J.: Eur. Phys. B 13, 47 (2000) ADSCrossRefGoogle Scholar
  34. 34.
    Rerrero, M., et al.: Phys. Rev. B 80, 064501 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    Kivelson, S.A., et al.: Rev. Mod. Phys. 75, 1201 (2003) ADSCrossRefGoogle Scholar
  36. 36.
    Barišić, S., Zelenko, J.: Solid State Commun. 74, 367 (1990) ADSCrossRefGoogle Scholar
  37. 37.
    Labbé, J., Friedel, J.: J. Phys. 27, 153 (1966) CrossRefGoogle Scholar
  38. 38.
    Labbé, J., Friedel, J.: J. Phys. 27, 303 (1966) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Institute of PhysicsZagrebCroatia

Personalised recommendations