Skip to main content

Search for Superconductivity in Ultra-dense Deuterium D(−1) at Room Temperature: Depletion of D(−1) at Field Strength >0.05 T

Abstract

Ultra-dense deuterium D(−1) is expected to be both a superfluid and a superconductor as shown by recent theoretical research. Condensed D(−1) can be deposited on surfaces by a source which produces a stream of clusters. A magnetic field strongly influences the type of material formed. Very little of D(−1) and of the form D(1), which is strongly coupled to D(−1), exists on the magnet surface or within several mm from the magnet surface. Even the formation of D(−1) on the source emitter is strongly influenced by a magnetic field, with a critical field strength in the range 0.03–0.07 T. Higher excitation levels D(2) and D(3) dominate in a magnetic field. The excitation level D(2) is now observed for the first time. The removal of D(−1) and D(1) in strong magnetic fields is proposed to be due to a Meissner effect in long D(−1) clusters by large-orbit electron motion. The lifting of long D(−1) clusters above the magnet surface is slightly larger than expected, possibly due to the coupling to D(1). The previously reported oscillation between D(−1) and D(1) in an electric field is proposed to be due to destruction of D(−1).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Badiei, S., Andersson, P.U., Holmlid, L.: Phys. Scr. 81, 045601 (2010)

    ADS  Article  Google Scholar 

  2. 2.

    Badiei, S., Andersson, P.U., Holmlid, L.: Appl. Phys. Lett. 96, 124103 (2010)

    ADS  Article  Google Scholar 

  3. 3.

    Andersson, P.U., Lönn, B., Holmlid, L.: Rev. Sci. Instrum. 82, 013503 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    Holmlid, L.: Int. J. Mass Spectrom. 304, 51 (2011)

    Article  Google Scholar 

  5. 5.

    Berezhiani, L., Gabadadze, G., Pirtskhalava, D.: J. High Energy Phys. 4, 94 (2011)

    ADS  Google Scholar 

  6. 6.

    Bedaque, P.F., Buchoff, M.I., Cherman, A.: J. High Energy Phys. 4, 122 (2010)

    ADS  Google Scholar 

  7. 7.

    Winterberg, F.: J. Fusion Energy 29, 317 (2010)

    Article  Google Scholar 

  8. 8.

    Winterberg, F.: Phys. Lett. A 374, 2766 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    Andersson, P.U., Holmlid, L.: Phys. Lett. A 373, 3067 (2009)

    ADS  Article  Google Scholar 

  10. 10.

    Andersson, P.U., Holmlid, L.: Phys. Lett. A 375, 1344 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    Badiei, S., Andersson, P.U., Holmlid, L.: Laser Part. Beams 28, 313 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    Andersson, P.U., Holmlid, L.: J. Fusion Energy (2011, in print) doi:10.1007/s10894-011-9468-2

    Google Scholar 

  13. 13.

    Ashcroft, N.W.: J. Low Temp. Phys. 139, 711 (2005)

    ADS  Article  Google Scholar 

  14. 14.

    Militzer, B., Graham, R.L.: J. Phys. Chem. Solids 67, 2136 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    Manykin, E.A., Ojovan, M.I., Poluektov, P.P.: Proc. SPIE 6181, 618105-1-9 (2006)

    Google Scholar 

  16. 16.

    Manykin, É.A., Ozhovan, M.I., Poluéktov, P.P.: Sov. Phys. JETP 75, 440 (1992)

    Google Scholar 

  17. 17.

    Holmlid, L.: Chem. Phys. 237, 11 (1998)

    ADS  Article  Google Scholar 

  18. 18.

    Holmlid, L.: J. Mol. Struct. 885, 122 (2008)

    ADS  Article  Google Scholar 

  19. 19.

    Kotarba, A., Dmytrzyk, J., Narkiewicz, U., Baranski, A.: React. Kinet. Catal. Lett. 74, 143 (2001)

    Article  Google Scholar 

  20. 20.

    Kotarba, A., Baranski, A., Hodorowicz, S., Sokolowski, J., Szytula, A., Holmlid, L.: Catal. Lett. 67, 129 (2000)

    Article  Google Scholar 

  21. 21.

    Kotarba, A., Adamski, G., Sojka, Z., Witkowski, S., Djega-Mariadassou, G.: Stud. Surf. Sci. Catal. 130A, 485 (2000)

    Article  Google Scholar 

  22. 22.

    Chiesa, M., Giamello, E., Di Valentin, C., Pacchioni, G., Sojka, Z., Van Doorslaer, S.: J. Am. Chem. Soc. 127, 16935 (2005)

    Article  Google Scholar 

  23. 23.

    Mourachko, I., Li, W., Gallagher, T.F.: Phys. Rev. A 70, 031401 (2004)

    ADS  Article  Google Scholar 

  24. 24.

    Anderson, W.R., Robinson, M.P., Martin, J.D.D., Gallagher, T.F.: Phys. Rev. A 65, 063404 (2002)

    ADS  Article  Google Scholar 

  25. 25.

    Choi, J.-H., Knuffmann, B., Cubel Liebisch, T., Reinhard, A., Raithel, G.: Adv. At. Mol. Opt. Phys. 54, 132 (2006)

    Google Scholar 

  26. 26.

    Badiei, S., Holmlid, L.: J. Phys. B, At. Mol. Opt. Phys. 39, 4191 (2006)

    ADS  Article  Google Scholar 

  27. 27.

    Holmlid, L.: J. Nanopart. Res. 13, 5535 (2011)

    Article  Google Scholar 

  28. 28.

    Holmlid, L.: J. Clust. Sci. (2011, in print) doi:10.1007/s10876-011-0387-1

  29. 29.

    Hirsch, J.E.: Physica C 470, 635 (2010)

    ADS  Article  Google Scholar 

  30. 30.

    Meima, G.R., Menon, P.G.: Appl. Catal. A, Gen. 212, 239 (2001)

    Article  Google Scholar 

  31. 31.

    Muhler, M., Schlögl, R., Ertl, G.: J. Catal. 138, 413 (1992)

    Article  Google Scholar 

  32. 32.

    Kotarba, A., Holmlid, L.: Phys. Chem. Chem. Phys. 11, 4351 (2009)

    Article  Google Scholar 

  33. 33.

    Guénault, T.: Basic Superfluids. Taylor & Francis, London (2003)

    MATH  Book  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leif Holmlid.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andersson, P.U., Holmlid, L. & Fuelling, S. Search for Superconductivity in Ultra-dense Deuterium D(−1) at Room Temperature: Depletion of D(−1) at Field Strength >0.05 T. J Supercond Nov Magn 25, 873–882 (2012). https://doi.org/10.1007/s10948-011-1371-6

Download citation

Keywords

  • Ultra-dense deuterium
  • Superconductor
  • Coulomb explosion
  • Magnetic field