Advertisement

Search for Superconductivity in Ultra-dense Deuterium D(−1) at Room Temperature: Depletion of D(−1) at Field Strength >0.05 T

  • Patrik U. Andersson
  • Leif HolmlidEmail author
  • Stephan Fuelling
Original Paper

Abstract

Ultra-dense deuterium D(−1) is expected to be both a superfluid and a superconductor as shown by recent theoretical research. Condensed D(−1) can be deposited on surfaces by a source which produces a stream of clusters. A magnetic field strongly influences the type of material formed. Very little of D(−1) and of the form D(1), which is strongly coupled to D(−1), exists on the magnet surface or within several mm from the magnet surface. Even the formation of D(−1) on the source emitter is strongly influenced by a magnetic field, with a critical field strength in the range 0.03–0.07 T. Higher excitation levels D(2) and D(3) dominate in a magnetic field. The excitation level D(2) is now observed for the first time. The removal of D(−1) and D(1) in strong magnetic fields is proposed to be due to a Meissner effect in long D(−1) clusters by large-orbit electron motion. The lifting of long D(−1) clusters above the magnet surface is slightly larger than expected, possibly due to the coupling to D(1). The previously reported oscillation between D(−1) and D(1) in an electric field is proposed to be due to destruction of D(−1).

Keywords

Ultra-dense deuterium Superconductor Coulomb explosion Magnetic field 

References

  1. 1.
    Badiei, S., Andersson, P.U., Holmlid, L.: Phys. Scr. 81, 045601 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    Badiei, S., Andersson, P.U., Holmlid, L.: Appl. Phys. Lett. 96, 124103 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    Andersson, P.U., Lönn, B., Holmlid, L.: Rev. Sci. Instrum. 82, 013503 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    Holmlid, L.: Int. J. Mass Spectrom. 304, 51 (2011) CrossRefGoogle Scholar
  5. 5.
    Berezhiani, L., Gabadadze, G., Pirtskhalava, D.: J. High Energy Phys. 4, 94 (2011) ADSGoogle Scholar
  6. 6.
    Bedaque, P.F., Buchoff, M.I., Cherman, A.: J. High Energy Phys. 4, 122 (2010) ADSGoogle Scholar
  7. 7.
    Winterberg, F.: J. Fusion Energy 29, 317 (2010) CrossRefGoogle Scholar
  8. 8.
    Winterberg, F.: Phys. Lett. A 374, 2766 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    Andersson, P.U., Holmlid, L.: Phys. Lett. A 373, 3067 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Andersson, P.U., Holmlid, L.: Phys. Lett. A 375, 1344 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    Badiei, S., Andersson, P.U., Holmlid, L.: Laser Part. Beams 28, 313 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    Andersson, P.U., Holmlid, L.: J. Fusion Energy (2011, in print) doi: 10.1007/s10894-011-9468-2 Google Scholar
  13. 13.
    Ashcroft, N.W.: J. Low Temp. Phys. 139, 711 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    Militzer, B., Graham, R.L.: J. Phys. Chem. Solids 67, 2136 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    Manykin, E.A., Ojovan, M.I., Poluektov, P.P.: Proc. SPIE 6181, 618105-1-9 (2006) Google Scholar
  16. 16.
    Manykin, É.A., Ozhovan, M.I., Poluéktov, P.P.: Sov. Phys. JETP 75, 440 (1992) Google Scholar
  17. 17.
    Holmlid, L.: Chem. Phys. 237, 11 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    Holmlid, L.: J. Mol. Struct. 885, 122 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    Kotarba, A., Dmytrzyk, J., Narkiewicz, U., Baranski, A.: React. Kinet. Catal. Lett. 74, 143 (2001) CrossRefGoogle Scholar
  20. 20.
    Kotarba, A., Baranski, A., Hodorowicz, S., Sokolowski, J., Szytula, A., Holmlid, L.: Catal. Lett. 67, 129 (2000) CrossRefGoogle Scholar
  21. 21.
    Kotarba, A., Adamski, G., Sojka, Z., Witkowski, S., Djega-Mariadassou, G.: Stud. Surf. Sci. Catal. 130A, 485 (2000) CrossRefGoogle Scholar
  22. 22.
    Chiesa, M., Giamello, E., Di Valentin, C., Pacchioni, G., Sojka, Z., Van Doorslaer, S.: J. Am. Chem. Soc. 127, 16935 (2005) CrossRefGoogle Scholar
  23. 23.
    Mourachko, I., Li, W., Gallagher, T.F.: Phys. Rev. A 70, 031401 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    Anderson, W.R., Robinson, M.P., Martin, J.D.D., Gallagher, T.F.: Phys. Rev. A 65, 063404 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    Choi, J.-H., Knuffmann, B., Cubel Liebisch, T., Reinhard, A., Raithel, G.: Adv. At. Mol. Opt. Phys. 54, 132 (2006) Google Scholar
  26. 26.
    Badiei, S., Holmlid, L.: J. Phys. B, At. Mol. Opt. Phys. 39, 4191 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    Holmlid, L.: J. Nanopart. Res. 13, 5535 (2011) CrossRefGoogle Scholar
  28. 28.
    Holmlid, L.: J. Clust. Sci. (2011, in print) doi: 10.1007/s10876-011-0387-1
  29. 29.
    Hirsch, J.E.: Physica C 470, 635 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    Meima, G.R., Menon, P.G.: Appl. Catal. A, Gen. 212, 239 (2001) CrossRefGoogle Scholar
  31. 31.
    Muhler, M., Schlögl, R., Ertl, G.: J. Catal. 138, 413 (1992) CrossRefGoogle Scholar
  32. 32.
    Kotarba, A., Holmlid, L.: Phys. Chem. Chem. Phys. 11, 4351 (2009) CrossRefGoogle Scholar
  33. 33.
    Guénault, T.: Basic Superfluids. Taylor & Francis, London (2003) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Patrik U. Andersson
    • 1
  • Leif Holmlid
    • 1
    Email author
  • Stephan Fuelling
    • 2
  1. 1.Atmospheric Science, Department of ChemistryUniversity of GothenburgGöteborgSweden
  2. 2.University of Nevada RenoDepartment of PhysicsRenoUSA

Personalised recommendations