Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 8, pp 2803–2808 | Cite as

In Situ Synthesis of Silica-Coated Magnetite Nanoparticles by Reverse Coprecipitation Method

  • H. Kazemzadeh
  • A. Ataie
  • F. Rashchi
Original Paper


Silica-coated magnetite nanoparticles were synthesized by reverse coprecipitation of Fe2+ and Fe3+ with sodium hydroxide in the presence of sodium silicate solution. Effect of reaction conditions and various amounts of sodium silicate solution on the powder particle characteristics was investigated by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), laser particle size analyzer (LPSA), streaming current potential and vibrating sample magnetometer (VSM) techniques. Also, stability of silica-coated magnetite nanoparticles in the acidic condition has been studied by titration method. FT-IR results revealed that silica chemisorbed on the surface of magnetite nanoparticles by Fe–O–Si bonds. Analysis of the XRD patterns confirmed the formation of magnetite having spinel structure in the presence of sodium silicate solution. FE-SEM micrographs revealed that the mean particle size of spherical magnetite decreased from 50 to less than 25 nm by adding sodium silicate solution. Agglomeration declined when the volume ratio of sodium silicate/sodium hydroxide was 0.1. This was attributed to the coating of magnetite nanoparticles by silica. Coating of magnetite by silica prevents the formation of hydrogen bondings between magnetite and water molecules. Further increase in the sodium silicate concentration revealed a reverse effect.


Nanoparticles Magnetite Reverse coprecipitation Silica coating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sun, C., Lee, J.S.H., Zhang, M.Q.: Adv. Drug Deliv. Rev. 60, 1252 (2008) CrossRefGoogle Scholar
  2. 2.
    Mizukoshi, Y., Shuto, T., Masahashi, N., Tanabe, S.: Ultrason. Sonochem. 16, 525 (2009) CrossRefGoogle Scholar
  3. 3.
    Chastellain, M., Petri, A., Hofmannknkn, H.: J. Colloid Interface Sci. 278, 353 (2004) CrossRefGoogle Scholar
  4. 4.
    Xu, C., Teja, A.S.: J. Supercrit. Fluids 44, 85 (2008) CrossRefGoogle Scholar
  5. 5.
    Pang, S.C., Chin, S.F., Anderson, M.A.: J. Colloid Interface Sci. 311, 94 (2007) CrossRefGoogle Scholar
  6. 6.
    Aono, H., Hirazawa, H., Naohara, T., Maehara, T., Kikkawa, H., Watanabe, Y.: Mater. Res. Bull. 40, 1126 (2005) CrossRefGoogle Scholar
  7. 7.
    Ataie, A., Kazemzadeh, H., Nikkhah-Moshaie, R., Ahmed, F.M.: IEEE Trans. Magn. 45, 2496 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N.: Chem. Rev. 108, 2064 (2008) CrossRefGoogle Scholar
  9. 9.
    Feng, B., Hong, R.Y., Wang, L.S., Guo, L., Li, H.Z., Ding, J., Zheng, Y., Wei, D.G.: Colloids Surf. A 328, 52 (2008) CrossRefGoogle Scholar
  10. 10.
    Girginova, P.I., Daniel-da-Silva, A.L., Lopes, C.B., Figueira, P., Otero, M., Amaral, V.S., Pereira, E., Trindade, T.: J. Colloid Interface Sci. 345, 234 (2010) CrossRefGoogle Scholar
  11. 11.
    Tartaj, P., Morales, M.d.P., Veintemillas-Verdaguer, S., González-Carreño, T., Serna, C.J.: J. Phys. D, Appl. Phys. 36, R182 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    Pokrovski, G.S., Schott, J., Farges, F., Hazemann, J.-L.: Geochim. Cosmochim. Acta 67, 3559 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    Reardon, E.J.: Chem. Geol. 25, 339 (1979) CrossRefGoogle Scholar
  14. 14.
    Li, G.Y., Jiang, Y.R., Huang, K.L., Ding, P., Chen, J.: J. Alloys Compd. 466, 451 (2008) CrossRefGoogle Scholar
  15. 15.
    Jain, N., Wang, Y., Jones, S.K., Hawkett, B.S., Warr, G.G.: Langmuir 26, 4465 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Metallurgy and Materials EngineeringUniversity of TehranTehranIran

Personalised recommendations