Skip to main content
Log in

Superconducting Bands Stabilizing Superconductivity in YBa2Cu3O7 and MgB2

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

It is shown that the ceramic superconductor YBa2Cu3O7 as well as the superconducting intermetallic compound MgB2 possesses a narrow, partly filled “superconducting band” with Wannier functions of special symmetry in their band structures. This result corroborates previous observations about the band structures of numerous superconductors and non-superconductors showing that evidently superconductivity is always connected with such superconducting bands. These findings are interpreted in the framework of a nonadiabatic extension of the Heisenberg model. Within this new group-theoretical model of correlated systems, Cooper pairs are stabilized by a nonadiabatic mechanism of constraining forces effective in narrow superconducting bands. The formation of Cooper pairs in a superconducting band is mediated by the energetically lowest boson excitations in the considered material that carry the crystal-spin angular momentum 1⋅. These crystal-spin-1 bosons are proposed to determine whether the material is a conventional low-T c or a high-T c superconductor. This interpretation provides the electron–phonon mechanism that enters the BCS theory in conventional superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krüger, E.: Phys. Rev. B 63, 144403 (2001)

    Article  ADS  Google Scholar 

  2. Heisenberg, W.: Z. Phys. 49, 619 (1928)

    Article  ADS  Google Scholar 

  3. Mott, N.F.: Can. J. Phys. 34, 1356 (1956)

    Article  ADS  Google Scholar 

  4. Hubbard, J.: Proc. R. Soc. Lond. Ser. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  5. Krüger, E.: Phys. Rev. B 40, 11090 (1989)

    Article  ADS  Google Scholar 

  6. Krüger, E.: Phys. Rev. B 59, 13795 (1999)

    Article  ADS  Google Scholar 

  7. Krüger, E.: J. Supercond. 18(4), 433 (2005)

    ADS  Google Scholar 

  8. Krüger, E.: Phys. Rev. B 75, 024408 (2007)

    Article  ADS  Google Scholar 

  9. Krüger, E.: Phys. Status Solidi B 85, 493 (1978)

    Article  Google Scholar 

  10. Krüger, E.: J. Supercond. 14(4), 551 (2001)

    Google Scholar 

  11. Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Chu, C.W.: Phys. Rev. Lett. 58, 908 (1987)

    Article  ADS  Google Scholar 

  12. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Nature (Lond.) 410, 63 (2001)

    Article  ADS  Google Scholar 

  13. Jepsen, O.: private communication (2009)

  14. Krüger, E.: Phys. Rev. B 30, 2621 (1984)

    Article  ADS  Google Scholar 

  15. Krüger, E.: J. Supercond. 14(4), 469 (2001); it should be noted that in this paper the term “superconducting band” was abbreviated by “σ-band”

    Google Scholar 

  16. Bradley, C., Cracknell, A.P.: The Mathematical Theory of Symmetry in Solids. Clarendon, Oxford (1972)

    Google Scholar 

  17. Krüger, E.: J. Supercond. 15(2), 105 (2002)

    Google Scholar 

  18. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Krüger, E.: Phys. Status Solidi B 156, 345 (1989)

    Article  Google Scholar 

  20. Ling, D.C., Yong, G., Chen, J.T., Wenger, L.E.: Phys. Rev. Lett. 75, 2011 (1995)

    Article  ADS  Google Scholar 

  21. Harshman, D.R., Mills, A.P. Jr.: Phys. Rev. B 45, 10684 (1992)

    Article  ADS  Google Scholar 

  22. Bickers, N.E., Scalapino, D.J., White, S.R.: Phys. Rev. Lett. 62, 961 (1989)

    Article  ADS  Google Scholar 

  23. Monthoux, P., Balatsky, A.V., Pines, D.: Phys. Rev. B 46, 14803 (1992)

    Article  ADS  Google Scholar 

  24. Chakravarty, S., Sudbø, A., Anderson, P.W., Strong, S.: Science 261, 337 (1993)

    Article  ADS  Google Scholar 

  25. Hinks, D.G., Claus, H., Jorgensen, J.D.: Nature (Lond.) 411, 457 (2001)

    Article  ADS  Google Scholar 

  26. Bud’ko, S.L., Lapertot, G., Petrovic, C., Cunningham, C.E., Anderson, N., Canfield, P.C.: Phys. Rev. Lett. 86, 1877 (2001)

    Article  ADS  Google Scholar 

  27. Brotto, P., Tropeano, M., Ferdeghini, C., Manfrinetti, P., Palenzona, A., Galleani d’Agliano, E., Putti, M.: Phys. Rev. B 78, 092502 (2008)

    Article  ADS  Google Scholar 

  28. Koshelev, A.E., Varlamov, A.A., Vinokur, V.M.: Phys. Rev. B 72, 064523 (2005), and references therein

    Article  ADS  Google Scholar 

  29. Mazin, I.I., Andersen, O.K., Jepsen, O., Dolgov, O.V., Kortus, J., Golubov, A.A., Kuz’menko, A.B., van der Marel, D.: Phys. Rev. Lett. 89, 107002 (2002)

    Article  ADS  Google Scholar 

  30. Mazin, I.I., Andersen, O.K., Jepsen, O., Golubov, A.A., Dolgov, O.V., Kortus, J.: Phys. Rev. B 69, 056501 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekkehard Krüger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krüger, E. Superconducting Bands Stabilizing Superconductivity in YBa2Cu3O7 and MgB2 . J Supercond Nov Magn 23, 213–223 (2010). https://doi.org/10.1007/s10948-009-0518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-009-0518-1

Keywords

Navigation