Skip to main content
Log in

Microwave Resonant Transmission in a Superconducting Fabry–Perot Bilayer

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Microwave resonant transmission properties in a superconducting Fabry–Perot bilayer made of a high-temperature superconductor (YBa2Cu3O7−x ) and a nearly ferroelectric superconductor (n-SrTiO3) are theoretically investigated. The effect of high-temperature superconducting layer on the unusual resonant transmittance existing in a nearly ferroelectric superconductor is investigated. It is shown that a frequency-agile two-layer coating can be obtained with the addition of the high-temperature superconducting coating. Resonant frequencies can be shifted by varying the thickness of this coating. In addition, the ultra-narrow filtering feature makes such a bilayer resonator useful in the superconducting microwave electronics, such as a frequency sampler or spectrum analyzer in the signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu, Y.Y., Zhang, W.X., Ge, Z.C.: J. Electromagn. Waves Appl. 21, 719 (2007)

    Article  Google Scholar 

  2. Yeh, P.: Optical Waves in Layered Media. Wiley, New York (1981)

    Google Scholar 

  3. Rojas, J.A.M., Alpuente, J., Lopez-Espi, P., Garcia, P.: J. Electromagn. Waves Appl. 21, 1037 (2007)

    Google Scholar 

  4. Dubey, R.S., Gautam, D.K.: J. Electromagn. Waves Appl. 22, 849 (2008)

    Article  Google Scholar 

  5. Srivastava, R., Pati, S., Ojha, S.P.: Prog. Electromagn. Res. B 1, 197 (2008)

    Article  Google Scholar 

  6. Fardis, M., Khosravi, R.: Prog. Electromagn. Res. B 3, 143 (2008)

    Article  Google Scholar 

  7. Srivastava, R., Thapa, K.B., Pati, S., Ojha, S.P.: Prog. Electromagn. Res. B 7, 133 (2008)

    Article  Google Scholar 

  8. Awasthi, S.K., Malaviya, U., Ojha, S.P., Mishra, N., Singh, B.: Prog. Electromagn. Res. B 5, 133 (2008)

    Article  Google Scholar 

  9. Koonce, C.S., Cohen, M.L., Schooley, J.E., Hosler, W.R., Pfeiffer, L.F.: Phys. Rev. 163, 380 (1967)

    Article  ADS  Google Scholar 

  10. Levi, L., Millo, O., Sharoni, A., Tsabba, Y., Leitus, G., Reich, S.: Europhys. Lett. 51, 564 (2000)

    Article  ADS  Google Scholar 

  11. Birman, J.L., Zimbovskaya, N.A.: Phys. Rev. B 64, 144506 (2001)

    Article  ADS  Google Scholar 

  12. Wu, C.-J., Kuo, W.-K.: J. Opt. Soc. Am. B 23, 1836 (2006)

    Article  ADS  Google Scholar 

  13. He, X., Tang, Z., Zhang, B., Wu, Y.: Prog. Electromagn. Res. Lett. 3, 1 (2008)

    Article  Google Scholar 

  14. Wu, Y.Q., Tang, Z.X., Xu, Y.H., He, X., Zhang, B.: J. Electromagn. Waves Appl. 22, 555 (2008)

    Article  Google Scholar 

  15. Liu, S.F., Liu, S.D.: J. Electromagn. Waves Appl. 19, 2073 (2005)

    Article  Google Scholar 

  16. Wu, C.-J.: J. Electromagn. Waves Appl. 19, 1991 (2005)

    Article  Google Scholar 

  17. Boikov, Y.A., Claeson, T.: J. Appl. Phys. 81, 3232 (1997)

    Article  ADS  Google Scholar 

  18. Miranda, F.A., Subramanyam, G., Van Keuls, F.W., Romanofsky, R.R., Warner, J.D., Mueller, C.H.: IEEE Trans. Microwave Theory Tech. 48, 1181 (2000)

    Article  Google Scholar 

  19. Vendik, O.G., Kollberg, E., Gevorgian, S.S., Kozyrev, A.B., Soldatenkov, O.I.: Electron. Lett. 31, 654 (1995)

    Article  ADS  Google Scholar 

  20. Wu, C.-J.: J. Appl. Phys. 87, 493 (2000)

    Article  ADS  Google Scholar 

  21. Abbas, F., Davis, L.E., Gallop, J.C.: IEEE Trans. Appl. Supercond. 5, 3511 (1995)

    Article  Google Scholar 

  22. Wu, C.-J., Fu, C.-M., Kuo, W.-K., Yang, T.-J.: Prog. Electromagn. Res. 73, 39 (2007)

    Article  Google Scholar 

  23. Tsutsumi, M., Fukusako, T., Yoshida, S.: IEEE Trans. Microwave Theory Tech. 44, 1410 (1996)

    Article  Google Scholar 

  24. Wu, C.-J.: PIERS Online 3, 1186 (2007)

    Article  Google Scholar 

  25. Duzer, T.V., Turner, C.W.: Principle of Superconductive Devices and Circuits. Elsevier, New York (1981)

    Google Scholar 

  26. Vendik, O.G., Vendik, I.B., Kaparkov, D.I.: IEEE Trans. Microwave Theory Tech. 46, 469 (1998)

    Article  Google Scholar 

  27. Dressel, M., Gruner, G.: Electrodynamics of Solids: Optical Properties of Electrons in Matter. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  28. Wu, C.-J.: Phys. Lett. A 364, 163 (2007)

    Article  ADS  Google Scholar 

  29. Wu, C.-J., Tseng, T.-Y.: IEEE Trans. Magnetics 33, 2348 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Jang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CJ., Hsu, HT. & Yang, TJ. Microwave Resonant Transmission in a Superconducting Fabry–Perot Bilayer. J Supercond Nov Magn 22, 487–493 (2009). https://doi.org/10.1007/s10948-009-0446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-009-0446-0

Keywords

Navigation