Skip to main content
Log in

Interaction between the Ferromagnetic Dots and Vortices: Numerical Calculation and Experimental Results

  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Enhancing the pinning force in high-T c superconductors can be achieved by externally introduced periodic magnetic dots. We numerically calculate the interaction between ferromagnetic dots and vortices in high-T c superconductors. The London equation is used to generate two-dimensional vortex lattice. In the matching condition, we calculate the attraction force between magnetic dots and vortices. It is found that in an ideal condition, the pinning force of the magnetic dot reaches 2.5×10−11 N that is more than one order magnitude stronger than the intrinsic pinning force in YBa2Cu3O7 thin films. In the experimental side, we use a novel nano-technique to deposit periodic submicron Ni dots on YBa2Cu3O7 thin films. The current versus voltage characteristics of an YBa2Cu3O7 thin film strip with uniform Ni dots are measured at various temperatures and magnetic fields. They are compared with the current versus voltage characteristics of a bare YBa2Cu3O7 thin film strip without magnetic dots. It is found the critical current value of the strip with Ni dots reduces with a much slower pace as the magnetic field strength increases in comparison with the value of the bare sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sauerzopf, F.M., Wiesinger, H.P., Weber, H.W., Crabtree, G.W., Liu, J.Z.: Physica C 162–164, 751 (1989)

    Article  Google Scholar 

  2. Civale, L., Marwick, A.D., Worthington, T.K., Kirk, M.A., Thompson, J.R., Krusin-Elbaum, L., Sun, Y., Clem, J.R., Holtzberg, F.: Phys. Rev. Lett. 67, 648 (1991)

    Article  ADS  Google Scholar 

  3. Thompson, J.R., Krusin-Elbaum, L., Christen, D.K.: Appl. Phys. Lett. 71, 536 (1997)

    Article  ADS  Google Scholar 

  4. Kato, T., Shibauchi, T., Matsuda, Y., Thompson, J.R., Krusin-Elbaum, L.: Physica C 463–465, 240 (2007)

    Article  Google Scholar 

  5. Baert, M., Metlushko, V.V., Jonckheere, R., Moshchalkov, V.V., Bruynseraede, Y.: Phys. Rev. Lett. 74, 3269 (1995)

    Article  ADS  Google Scholar 

  6. Rosseel, E., Puig, T., Baert, M., Van Bael, M.J., Moshchalkov, V.V., Bruynseraede, Y.: Physica C 282, 1567 (1997)

    Article  ADS  Google Scholar 

  7. Silhanek, A.V., Van Look, L., Jonckheere, R., Zhu, B.Y., Raedts, S., Moshchalkov, V.V.: Phys. Rev. B 72, 014507 (2005)

    Article  ADS  Google Scholar 

  8. Prischepa, S.L., Armenio, A.A., Maritato, L., Kushnir, V.N., Barbanera, S.: Supercond. Sci. Technol. 18, 152 (2005)

    Article  ADS  Google Scholar 

  9. Martin, J.I., Velez, M., Nogues, J., Schuller, I.K.: Phys. Rev. Lett. 79, 1929 (1997)

    Article  ADS  Google Scholar 

  10. Martin, J.I., Velez, M., Nogues, J., Schuller, I.K.: Phys. Rev. Lett. 85, 1022 (1999)

    Article  ADS  Google Scholar 

  11. Morgan, D.J., Ketterson, J.B.: Phys. Rev. Lett. 80, 3614 (1997)

    Article  ADS  Google Scholar 

  12. Lange, M., Van Bael, M.J., Bruynseraede, Y., Moshchalkov, V.V.: Phys. Rev. Lett. 90, 197006-1 (2003)

    Article  ADS  Google Scholar 

  13. Eisenmenger, J., Oettinger, M., Pfahler, C., Plettl, A., Walther, P., Ziemann, P.: Phys. Rev. B 75, 144514 (2007)

    Article  ADS  Google Scholar 

  14. Milosevic, M.V., Peeters, F.M.: Phys. Rev. Lett. 93, 267006 (2004)

    Article  ADS  Google Scholar 

  15. Milosevic, M.V., Peeters, F.M.: Phys. Rev. B 69, 104522 (2004)

    Article  ADS  Google Scholar 

  16. Berdiyorov, G.R., Milosevic, M.V., Peeters, F.M.: Europhys. Lett. 74, 493 (2006)

    Article  ADS  Google Scholar 

  17. Reichhardt, C., et al.: Phys. Rev. B 54, 16108 (1996)

    Article  ADS  Google Scholar 

  18. Reichhardt, C., et al.: Phys. Rev. B 57, 7937 (1998)

    Article  ADS  Google Scholar 

  19. Reichhardt, C. et al.: Phys. Rev. B 63, 054510 (2001)

    Article  ADS  Google Scholar 

  20. Reichhardt, C., et al.: Phys. Rev. B 64, 014501 (2001)

    Article  ADS  Google Scholar 

  21. Reichhardt, C., et al.: Phys. Rev. B 64, 052503 (2001)

    Article  ADS  Google Scholar 

  22. Reichhardt, C., et al.: Physica C 404, 302 (2004).

    Article  ADS  Google Scholar 

  23. Pogosov, W.V., Rakhmanov, A.L., Moshchalkov, V.V.: Phys. Rev. B 67, 014532 (2003)

    Article  ADS  Google Scholar 

  24. Pogosov, W.V., Moshchalkov, V.V.: Physica C 404, 285 (2004)

    Article  ADS  Google Scholar 

  25. Poole, C.P., Farach, H.A., Creswick, R.J.: Superconductivity. Academic Press, New York (1995)

    Google Scholar 

  26. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  27. Cullity, B.D.: Introduction to Magnetic Materials. Addison-Wesley, Reading (1972)

    Google Scholar 

  28. Bezryadin, A., Pannetier, B.: J. Low Temp. Phys. 102, 73 (1996)

    ADS  Google Scholar 

  29. Tonucci, R.J., Justus, B.L., Campillo, A.J., Ford, C.E.: Science 258, 783 (1992)

    Article  ADS  Google Scholar 

  30. Pearson, D.H., Tonucci, R.J.: Science 270, 68 (1995)

    Article  ADS  Google Scholar 

  31. Zhang, Y.Z., Yeh, W.J.: IEEE Trans. Appl. Supercond. 5, 1517 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Yeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, B., Ragsdale, T. & Yeh, W.J. Interaction between the Ferromagnetic Dots and Vortices: Numerical Calculation and Experimental Results. J Supercond Nov Magn 21, 289–296 (2008). https://doi.org/10.1007/s10948-008-0331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-008-0331-2

Keywords

Navigation